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Abstract—Information-flow control (IFC) enforcing languages
can provide high assurance that software does not leak infor-
mation or allow an attacker to influence critical systems. IFC
hardware description languages have also been used to design
secure circuits that eliminate timing channels. However, there
remains a gap between IFC hardware and software; these two
components are built independently with no abstraction for how
to compose their security guarantees. This paper presents a
proposal for an instruction set architecture (ISA) that can provide
the appropriate abstraction for joining hardware and software
IFC mechanisms. Our ISA describes a RISC-V processor that
tracks information-flow labels at run time and uses these labels
to eliminate or mitigate timing channels. To make the ISA more
practical, it allows constrained downgrading of information; it
permits trading off security for performance; and still offers
control primitives such as system calls. We prove timing-sensitive
noninterference modulo downgrading and nonmalleability for
programs executing our ISA. This involves novel restrictions on
the mutability of labels beyond previous dynamic IFC systems.
Furthermore, we define specific security conditions which correct
hardware can implement to provide software-level security and
sketch how such hardware may be designed and verified.

I. INTRODUCTION

While timing channels have been well known to the security
community for decades, recent hardware-based exploits attest
that these vulnerabilities remain unsolved problems. For ex-
ample, the Spectre, Meltdown, and Foreshadow attacks allow
unprivileged processes to learn secrets by timing memory
accesses [1]–[3]. The sophisticated security mechanisms pro-
vided by these modern processors—privilege rings, memory
management units, and software guard extensions [4]—are
completely undermined by uncontrolled timing behaviors.
Current processors are not timing-safe.

The hardware-security community has investigated how
to eliminate timing channels from circuit implementations,
but these are not panaceas. Hardware description languages
(HDLs) such as SecVerilog [5] and Caisson [6] provide timing-
sensitive noninterference. They ensure that the time at which
“public” state is updated does not depend on any “secret”
state. While they do provide useful primitives for implement-
ing secure processors, these languages are not sufficient for
executing timing-safe software in a real-world setting. They
can preclude necessary operations (such as modifying security
labels at run time) and limit software’s ability to specify
security policies by baking those policies into the hardware.
In practice, software needs the ability to make application-

level policy decisions while still benefiting from the timing-
sensitive guarantees of security-focused HDLs. On the other
hand, more complex instantiations of secure processors lack
proofs that their ISAs enforce a meaningful security condition.
The Hyperflow processor [7], for instance, allows bounded
software modification of the “context label”, but no ISA-level
security condition gives guidance on how safe this is.

Software attempts to eliminate timing channels have had
some success but ultimately are not comprehensive, instead
targeting empirically known sources of timing variation. For
example, compilers for cryptographic computation [8]–[10]
help to mitigate side channels but are fundamentally incom-
plete, since they only model well known sources of timing
variation such as branching and caching. To fully remove
timing channels, a new interface is needed to constrain how
hardware state influences timing and which software instruc-
tions might leak information [11], [12].

The missing link between these hardware and software
approaches is an Instruction Set Architecture (ISA) with an
explicit abstraction for the influence of the machine state on
timing. With such an ISA, strong timing-sensitive security
conditions could be proved about software, relying on the
guarantees made by hardware.

As a straw man, a software–hardware contract might ensure
that all instructions with secret operands execute in constant
time. In fact, existing techniques for securely implementing
cryptography implicitly assume such a contract. However,
constant time inevitably means worst-case time, in general, so
such a contract has daunting implications for the performance
of memory operations. We argue that this kind of contract
is unnecessarily restrictive. It is not necessary that such
instructions take constant time; it is only necessary that the
time taken does not leak information.

This paper presents an ISA design that can be the interface
connecting high-level timing-sensitive software abstractions to
low-level timing-safe processor implementations. Our ISA is
based on information flow control (IFC), which means our
software–hardware contract is a set of IFC properties, rather
than a prescriptive set of implementation behaviors such as
forcing certain instructions to take constant time. Because the
interface is based on IFC, it is possible to formally prove that
only permitted information affects timing.

Our ISA design includes features to avoid being overly
restrictive, as IFC systems often are [13]. To this end, it



includes downgrading operations that allow software to en-
dorse untrusted inputs and to declassify secret data. We also
allow software to specify its own timing security policy, which
permits trading off timing-channel protection for performance.
Both of these features are limited so that they cannot be abused
by attackers to undermine the security guarantees of well-
behaved programs. We additionally include security primitives
that are required to implement a practical operating system.
These instructions are analogous to traditional system calls, but
they are designed to prevent unexpected information leakage.

The ISA in this paper tackles these goals with novel
constructs and stronger formal security assurance:
• The ISA dynamically enforces timing-sensitive nonmal-

leable information flow [14], while also preventing im-
plicit flows created by checking mutable labels.

• The ISA allows software to control the level of timing-
channel protection. The ISA can be used to eliminate
timing channels, mitigate timing channels with bounded
information leak using predictive mitigation [11], or
enforce nonmalleable information flow control without
timing channel protection.

• The ISA also includes novel instructions for implement-
ing privilege changes to emulate the functionality of
system calls while maintaining nonmalleability.

• The ISA is accompanied by formal, proved security
guarantees for programs implemented with it.

• We also formally specify security conditions with which
hardware implementations must comply to ensure secu-
rity of the ISA.

The paper proceeds as follows. Section II presents back-
ground on security labels and our attacker model. Section III
sketches our approach to controlling timing channels. Sections
IV and V formalize the ISA and discuss its novel features in
detail. In Section VI, we discuss the security conditions as-
sumed of the hardware and the practical challenges in realizing
those policies with modern HDLs. Section VII presents the
security results for this ISA and brief sketches of their proofs.
Section VIII uses example code to demonstrate use of the ISA.
In Section IX we discuss related work and we discuss future
work in Section X.

II. BACKGROUND

Our ISA both extends the RISC-V ISA1 [15] with new
instructions and modifies the semantics of existing instruc-
tions. RISC-V has instructions for computing on data, moving
data to and from memory, and for changing program control
flow. Architectural state refers to any storage location that
is explicitly accessible or modifiable by software, including
the 32 general-purpose registers, the program counter and all
memory locations. Our extension modifies all architectural
state to be associated with a security label. All other hardware
state is considered microarchitectural and affects only the
performance of software but not its functional behavior.

1Our approach is not specific to RISC-V and could be adapted for use in
other instruction sets.
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Fig. 1. Security lattice operators

The complete RISC-V ISA has many Control Status Regis-
ters (CSRs) which are considered architectural, but for brevity
we omit most of them from our formalization. These CSRs
should in principle also each have their own security labels.

A. Security Labels

As in most IFC systems, our security labels form a lattice
that supports a “flows to” relation v, a lattice join t and a
lattice meet u. We use the phrase “more restrictive” to refer to
labels higher in the lattice ordering (e.g., a v b means “b is at
least as restrictive as a”). Figure 1 defines useful and mostly
standard notation for label reference and manipulation. The
label lattice is a product of two other lattices, one for integrity
(trustworthiness of data) and one for confidentiality (secrecy
of data), so a lattice element is a pair (i, c). For generality, we
represent the two component lattices abstractly, but we restrict
them to be dual lattices over the same carrier set. That is, the
ordering v is reversed for the integrity and confidentiality
components of the label lattice. The reflection operator 
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used for controlled downgrading, swaps the two components
of a lattice element.

An illustrative instantiation of this lattice is for the com-
ponent lattice elements to represent principals. For instance,
component b could represent both Bob’s integrity (data written
by Bob) and Bob’s confidentiality (data readable by Bob),
where Bob is a user of the system. Bob’s data can flow to
anywhere that has a label at least as confidential and no more
trusted than b. Suppose there is a principal > that is least in
the integrity ordering (meaning that it is trusted by everyone)
and greatest in the confidentiality ordering; conversely, ⊥ is
highest in the integrity ordering (meaning that it is untrusted)
and least in confidentiality. Then data labeled (>, b) flows to
the label (b,>) because in integrity we have > v b and in
confidentiality, b v >.

B. Downgrading

Downgrading is the act of lowering the label of data in
the lattice, violating the normal direction of information flow
expressed by the lattice ordering. While downgrading greatly
improves expressibility, it is important to constrain it, so
that an attacker cannot leverage the downgrading mechanism
to extract more secrets or modify more trusted state than
the application developer intended. Our ISA enforces non-
malleability, a form of constrained downgrading, defined by
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Fig. 2. A 2-D slice of the combined confidentiality and integrity lattice. The
red section represents all compromised labels. The dotted lines represent valid
boundaries specifying a particular attacker model and dividing the lattice into
quadrants. The intersection of these lines must be a compromised label, but
need not be the same in each component lattice.

Cecchetti et al. [14]. Nonmalleability guarantees both robust
declassification and its dual transparent endorsement, which
respectively constrain the downgrading of confidentiality and
integrity.

We define compromised labels to represent exactly the
set of labels that can never be safely downgraded under
nonmalleability.

Definition 1 (Compromised Labels). A label is compromised
if it is not as trusted as it is secret:

l 6v 
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Intuitively, compromised data contains secret information
but has been modified by an attacker or other low-integrity
source. Allowing such data to be downgraded opens up the
possibility of “confused deputy” style attacks, where trusted
code that executes downgrades can be tricked into downgrad-
ing arbitrary data.

C. Attackers

We represent attackers by the maximal integrity iA with
which they can act and a minimal confidentiality cA that
they cannot observe. This is equivalent to typical attacker
definitions which use a maximal confidentiality cM the attacker
can observe. Since we assume a finite lattice, we can translate
cM to cA as follows:

Ls = {l | l 6v cM}

cA ≡
∨
ls∈Ls

ls

cA represents the disjunction of all labels which cM is not
allowed to read, and therefore defines the minimal confiden-
tiality that they cannot observe.

It is convenient to summarize the attacker as a single label
A = (iA, cA). As depicted in Figure 2, the components cA and
iA define upward-closed sets of secret and untrusted labels:

S = {l | cA v l}
U = {l | iA v l}

The sets of public (P) and trusted (T ) labels are simply any
labels not in S or U , respectively. Attackers can only read
public data and can only write to untrusted data.

a) Fair Attacks: Similar to prior work on robust declassi-
fication [16], our security guarantees hold against fair attacks,
where high-secrecy and high-integrity information are only
protected from attackers that do not already know those secrets
or are not already highly trusted. In this work, fair attacks are
defined as those where A represents a compromised label:

Definition 2 (Fair Attacker). Attacker A = (iA, cA) is a fair
attacker if and only if A is a compromised label.

Since a given attacker may be partly trusted with respect to
integrity and confidentiality, the label A is not a fixed, known
label. Rather, we consider the system to be secure if it is secure
against all possible fair attackers A.

Our earlier Bob example can illustrate why this definition
eliminates unfair attackers. In a security lattice including the
orderings (>,⊥) v (b, b) v (⊥,>), consider the attacker
with Bob’s integrity who is only allowed to read fully public
data: A = (b, b).2 A is not a fair attacker: it is as trusted as
Bob (and can therefore impersonate him) but is not supposed
to learn any of Bob’s secrets. Essentially, this A would
model Bob attacking himself. Our security condition does not
prevent Bob from mistakenly releasing his own data to the
public; it prevents untrusted attackers from doing so and from
manipulating Bob into doing so for them.

b) Other Assumptions: We assume a strong attacker
that may observe the wall-clock time at which writes to
public locations occur, and not just the ordering of writes.
This observational power corresponds to a colocated attacker-
controlled process that can race on memory accesses and has
access to wall-clock time. Defending against such a strong
attacker is preferable since it makes the security assurance
correspondingly stronger.

Since our ISA implements a dynamic IFC system, attackers
can observe the labels of data through the success or failure of
run-time checks [17]. For example, if secret (S) is used (either
directly or implicitly through branching ) to label another piece
of data (D) as secret, then an attacker may learn information
about S when their attempt to read D fails. The ISA does not
include instructions for explicitly reading labels and therefore
we assume attackers cannot directly read label values.

III. CONTROLLING TIMING CHANNELS

Here we present high-level examples of where timing chan-
nels arise and how we approach mitigating them. Figure 3
contains RISC-V code with a simple microarchitectural timing

2Note that this label is not compromised since (b, b) v (b, b)



# s0: secret int, a0: public int[], a1: public int
add s1, a0, s0 # s1 = &(a0[s0])
lw s2, 0(s1) # s2 = *s1
lw a1, 0(a0) # a1 = a0[0]

Fig. 3. Meltdown-style timing channel via microarchitectural state

# l0,l1,l2: public int
# h1,h2: secret-trusted int
# secret: secret-trusted boolean
l0 = l1
if (secret): h1 = l1; else: h1 = l2;
l0 = 1

Fig. 4. Untrusted inputs causing secrets to leak via timing

channel: a secret-dependent load causing cache interference.
In this example, s0 is a secret value; a0 and a1 are public
information. In modern processors, lw (“load word”) is not
a constant-time operation; its duration depends primarily on
the address being accessed and other microarchitectural state
(notably the cache). In this case, the address depends on s0, a
secret offset into array a0. Loading the data at address s1 also
causes some region of the a0 array to be placed in cache. If
this region happens to be close to the beginning of the array,
the second lw experiences a cache hit and executes quickly.
In this way, an attacker who can observe how long it takes to
load public information learns some secret information. This
vulnerability reflects the core information transfer mechanism
of the Meltdown attack [2].

In our ISA, software specifies a timing label, an upper bound
on what information may influence instruction completion
timing. If the program in Figure 3 executed with a secret
timing label, then it would have the same unsatisfactory
timing guarantees as current software. However, if the timing
label were set to public, then only public information could
influence how long any instruction took and the latency of the
second lw will not reveal any information about s0. Obviously,
software running at a low timing label may not benefit from all
possible performance optimizations, but it does not necessarily
require hardware to take worst-case time.

Figure 4 represents a different kind of timing channel,
where an attacker can determine information about secrets by
observing how long secret-dependent operations take. In this
example, the attacker primes the cache by loading a public
value, l1. Then, by observing when l0 is updated, they can
infer whether or not the memory read operation in between
was a cache hit or miss. A hit implies that the true branch
was taken, since l1 was already cached.

The problem here is related to the interaction of low-
integrity state with high-confidentiality computation; a cache
that has been tainted with attacker-influenced state should
not be allowed to influence the duration of secret operations.
We incorporate this idea into our upcall instruction, which
allows software to execute in a secret context for a prede-

termined amount of time. Critically, low-integrity attackers
cannot upcall their way into learning secrets nor can they
influence how trusted code execute their upcalls. By con-
sidering the relationship between integrity and confidentiality,
we can allow programs similar to Figure 4 to execute safely,
while disallowing variants that might leak information through
timing.

IV. FORMALIZING THE ISA

A. Definitions and Model

In this section we present an abridged semantics for our
ISA. First, we introduce the model for our semantics and some
notational definitions. We represent our ISA as a small-step
operational semantics on configurations.

Definition 3 (Configurations). A processor configuration rep-
resents the current state of the processor, encompassing both
architecturally visible state and microarchitectural state.

SW registers/memory M : Int→ Int
SW label mappings L : Int→ Lbl

opaque HW state µ : Name→ Lbl
program counter and label pc : PC = Int× Lbl

cycle counter and label t : T = Int× Lbl
call stack CS : List(PC×T)

processor configuration C : 〈CS ,M,L, µ, pc, t〉

For simplicity, we represent both registers and DRAM as a
single mapping M , in which registers are located at special
addresses. Addresses are drawn from Int, a set of finite-size
integers.3 Name is a set of variable names, which can refer
to locations but are not directly representable as values. Lbl
is the set of labels representable in our lattice. For clarity,
we abbreviate full configurations as Ci, where subscript i on
elements disambiguates between source configurations (e.g.,
M1 is the software memory of configuration C1). Additionally,
we use pcv to refer to the value of the pc and pcl to refer to
its label. The same convention is used for t.

In order to reason about the security label of a given piece
of state in the processor, we define various conventions for
looking up label values and converting integers to labels.

Definition 4 (Label lookup). Both architectural state and
microarchitectural state are tagged with security labels. These
functions describe how to determine the value of a location’s
label, where i ∈ Int, and n ∈ Name.

Interpret i as a Lbl value γ(i)
Label of location i L(i)

Label of n Γ(C)(n)

Γ is a function parameterized on processor state. This
function is defined statically for a given implementation of
the hardware at design time. This parameterization allows the
label of any location to depend on software-specified values
and/or other run-time microarchitectural state.



TABLE I
MODIFIED SEMANTICS FOR STANDARD RISC-V INSTRUCTIONS

Insn Type Restrictions Behavior
COMPUTE pcl t L(rs1) t L(rs2) v L(rd) M ′ = M [rd 7→ Rs1 ⊗Rs2]
LOAD pcl t L(rs1) t L(M(Rs1)) v L(rd) M ′ = M [rd 7→M(Rs1)]
STORE pcl t L(rs1) t L(rd) v L(M(Rs1)) M ′ = M [M(Rs1) 7→ Rd]
BRANCH L(rs1) t L(rs2) v pcl pc′ = (Rs1 ⊗Rs2)?imm : pc + 4
JUMP L(rs1) v pcl pc′ = Rs1
ALL PC L(M(pcv)) v pcl ∧ pcl v 
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JJ(pcl) applies to all instructions

ALL T tl v 
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JJ(tl) ∧ pcl v tl applies to all instructions

GR ` 〈CS ,M,L, µ, pc, t〉 −→ 〈CS ′,M ′, L′, µ′, pc′, t′〉

EXECUTE
GR ` 〈CS ,M,L, pc, t〉 −→A 〈CS ′,M ′, L′, pc′, t′l〉 GR ` 〈CS ,M,L, µ, pc, t〉 −→µ 〈µ′, t′v〉

GR ` 〈CS ,M,L, µ, pc, t〉 −→ 〈CS ′,M ′, L′, µ′, pc′, t′〉

STALL
〈CS ,M,L, µ, pc, t〉 −→µ 〈µ′, t′v〉

GR ` 〈CS ,M,L, µ, pc, t〉 −→ 〈CS ,M,L, µ′, pc, (t′v, tl)〉

Fig. 5. Complete CPU operational semantics. These rules defer to semantics which describe how architectural state is modified (−→A) and which describe
how microarchitectural state is modified (−→µ).

B. Operational Semantics

We present this ISA as a small-step operational semantics,
factored into two semantics: a partial semantics specified by
software instructions and an opaque hardware semantics that
describes the behavior of microarchitectural state. Figure 5
shows the complete operational semantics for a CPU and how,
in any given time step, the CPU can update architectural state
(by taking a −→A transition) or “stall” (from the perspective
of software) by updating only microarchitectural state. While
we provide the explicit semantics for −→A (see Figure 7), the
semantics for −→µ are intentionally left unspecified because
they are implementation-dependent. The architectural seman-
tics (−→A) do not depend upon the current state of µ since
µ should not, by definition, influence the behavior of software
(beyond timing). Instead, we define a set of properties that
the transition function −→µ must satisfy. It is these properties
that allows the ISA to offer security guarantees that current
architectures lack.

Table I provides an abridged definition of instruction re-
strictions (also referred to as “label checks”) and behavior for
pre-existing RISC-V instructions. For abbreviation purposes,
the notation rx represents the index of a register specified
by an instruction. To refer to the contents of the register, we
write Rx, a shorthand for M(rx), the contents of the special
memory location which holds that register. The symbol ⊗
represents some arithmetic or relational operator appropriate
to the instruction in question.

In general, the restrictions on instructions prevent state with
high-security labels from influencing state with low security
labels. If the restrictions for a given rule cannot be met, the

3The size of this range (for example, 32 or 64 bits) is architecture-specific.

instruction becomes a “no-op” that increments pcv but has no
other effects. No-ops avoid leaking information through the
enforcement of label checks. However, for certain errors, it
is safe to jump to a special program counter, errorpc, while
retaining the current pcl and tl. One such error is violation of
the ALL PC rule, which can safely cause the program to jump
to errorpc without breaking noninterference. The full list of
these errors is specified in the technical report [18]. At this
point, any error-handling program may execute (for example,
to signal termination), as long as it obeys the restrictions
on normal execution. To a public observer, a program that
produces an error with a secret pc label therefore appears
equivalent to a correctly operating program.

The COMPUTE, LOAD/STORE and BRANCH restrictions are
straightforward; they ensure that instruction operands and
the pc must flow to the destination register. The BRANCH
restrictions prevent implicit flows.

The ALL PC restriction ensures that the instruction being
executed is at least as trusted and public as the pc itself. This
constraint prevents a trusted or public program from reading
instructions from secret or untrusted memory. Additionally,
ALL PC maintains the invariant that a program may execute
only if it has an uncompromised pc. We note in Section V
that keeping the pc uncompromised is required to prevent call
gates from breaking nonmalleability.

The ALL T restriction ensures that the timing label is
uncompromised and is at least as restrictive as the pc label.
We summarize these restrictions as a validity condition:

ISVALID(pcl, tl) , (pcl v tl)∧(pcl v 
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Intuitively, it would be difficult to implement any reasonable
hardware that did not guarantee this condition. In any case



if (s):
upgrade(ts, UNTRUSTED)

else:
skip

ts2 := ts

Fig. 6. Leaking secrets via an integrity upgrade. Execution is successful
exactly when s is false.

where the pc label was more restrictive, the duration of the
instruction would have to be independent of the instruction
performed! This is obviously impractical for real systems,
and the restriction allows us to mostly reason about pcl when
proving security conditions .

C. Label Mutation

Figure 7 gives the operational semantics for instructions that
modify label state or that raise or lower privilege.4 Label-
mutation instructions modify the labels of memory locations. It
is well known that flow-sensitive monitors, including this ISA5,
can leak information by modifying labels if mutation is not
appropriately limited [17], [19]. Since our approach involves
no extra static information about the executing software, we
implement the no-sensitive-upgrade (NSU) policy [20]. The
NSU policy dynamically prevents leaks by requiring that the
pcl can flow to both the original label and the final label of
the data.

However, this restriction does not eliminate all information
leakage caused by label mutation. Consider the example in
Figure 6. In this case, the label change is inside a secret
context, which requires that the pc is secret and trusted.
Register ts is secret and trusted and the upgrade makes it
secret and untrusted. The label pcl flows to both the original
and final labels of ts, so the aforementioned rule is satisfied.
Nevertheless, the final assignment (which occurs in a public
context) to ts2 will succeed in the case where s is false
and fail otherwise since ts now represents untrustworthy
information.

Additionally, since label arguments themselves are labeled
memory locations, we require that the label of those arguments
flows to pcl. For example, the instruction dwnlbl x3, x6
means: “Downgrade the label of register x3 to the label
represented by the value stored in register x6”. If the label
of x6 itself were secret, using it to change the label of x3 in
a public context could allow an observer to learn about the
content of x6. If the label of a location whose content is used
as a label does not flow to pcl, then the instruction becomes
a no-op to prevent this kind of leakage.

We introduce additional restrictions on both upgrade and
downgrade rules to prevent similar kinds of information leak-

4The Rsn notation refers to RISC-V style register addresses; instruction-
size limitations require that the real encoding differ slightly from this notation,
but it is semantically equivalent.

5Although this ISA is flow-sensitive, it does not have floating labels [19],
and therefore labels must be explicitly changed by software instructions.

age; these rules differ from each other in order to be more
permissive.

a) Upgrading: The predicate UPLBL(pcl, l, l
′) ex-

presses the NSU check for upgrading label l to label l′ in
the context pcl:

UPLBL(pcl, l, l
′) , (pcl v l v l′) ∧ (l′ v 
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JJ(pcl))

The intuition here is that we need an upper bound for the
final label to prevent it from moving to a new quadrant in the
lattice. UPLBL deviates from the original NSU definition by
adding the constraint l′ v 
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JJ(pcl). This prevents programs from

creating untrustworthy information in secret contexts and vice
versa. For the program in Figure 6, the uplbl instruction fails
the UPLBL test, preventing the offending label modification.
Unfortunately, this still leaks the value of s since the program
only fails when s is true. The key insight for handling this
case is that the failure happens while the pc is still in a high
context, so measures can be taken to prevent a low context
from observing the failure. We discuss this leakage in further
detail below (Section IV-D).

b) Downgrading: There are two different cases to con-
sider when downgrading label l to l′: l′ v l and l′ 6v l.
For the first case, the predicate DWNLBL(pcl, l, l

′) expresses
the existing nonmalleable information flow restrictions when
downgrading label l to label l′ in the context pcl.

DWNLBL(pcl, l, l
′) , (pcl v l′) ∧ (l′ v l) ∧ (l v 
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The other case is the general form of downgrading, which we
model as first executing a downgrade from l to lu l′, followed
by an upgrade to l′. As one might expect, this essentially
combines the restrictions from those other cases:

RELBL(pcl, l, l
′) , (pcl v l u l′)∧ (l v 
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This check implies the original nonmalleability restrictions,6

which means it is no more permissive.

D. Raising context labels

The upcall/upret instruction pair introduces primitives
for controlling timing channels while branching on secret or
untrusted values. The upcall instruction allows a process
to enter a more restricted context with a higher pcl and tl,
while pushing the current pcl and tl to a call stack. In the
new context, the program cannot write to low outputs, but its
execution timing can be influenced by high hardware state.
However, returning from this context reveals timing informa-
tion about the duration of the subprogram. This problem can
be seen in the higher-level program shown in Figure 8. The
low adversary is allowed to observe the time of completion for
the while block, since it can observe the timing of the writes
to public_val. However, the duration of this block depends
upon secret values. This example shows a more general version
of the label-checking termination channel from Figure 6.

6In our setting, their requirement would roughly translate to the conditions:
l v l′ t 
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GR ` 〈CS ,M,L, pc, t〉 −→A 〈CS ,M ′, L′, pc′, tl〉

l = L(rd) l′ = γ(Rs1) RELBL(pcl, l, l
′) L(rs1) v pcl L′ = L[rd 7→ l′]

GR ` 〈CS ,M,L, pc, t〉 −→A 〈CS ,M,L′, (pcv + 4, pcl), tl〉
DWNLBL

l = L(rd) l′ = γ(Rs1) UPLBL(pcl, l, l
′) L(rs1) v pcl L′ = L[rd 7→ l′]

GR ` 〈CS ,M,L, pc, t〉 −→A 〈CS ,M,L′, (pcv + 4, pcl), tl〉
UPLBL

¬INUPCALL pc′l = γ(Rs1) t′l = γ(Rs2) ISVALID(pc′l, t
′
l) L(rs1) t L(rs2) t L(rs3) t L(rd) v pcl

pcl t tl v pc′l v t′l endpc = Rs3 endt = Rd + tv CS ′[head ] = ((endpc, pcl), (endt , tl)) CS ′[tail] = CS

GR ` 〈CS ,M,L, pc, t〉 −→A 〈CS ′,M,L, (pcv + 4, pc′l), t
′
l〉

UPCALL

INUPCALL ((endpc, pc′l), (endt , t
′
l)) = CS [head ] tv 6= endt

GR ` 〈CS ,M,L, pc, t〉 −→A 〈CS ,M,L, pc, tl〉
UPRET-NOP

INUPCALL ((endpc, pc′l), (endt , t
′
l)) = CS [head ] CS ′ = CS [tail] tv = endt

GR ` 〈CS ,M,L, pc, t〉 −→A 〈CS ′,M,L, (endpc, pc′l), t
′
l〉

UPRET-DONE

∅ = CS [head ] endpc = pcv + 4 CS ′[head ] = ((endpc, pcl), (null, tl))
CS ′[tail] = CS (pc′, t′l) = GR(Rs1) ISVALID(pc′l, t

′
l) L(rs1) v pcl pc′l t t′l @ pcl

GR ` 〈CS ,M,L, pc, t〉 −→A 〈CS ′,M,L, pc′, t′l〉
DWNCALL

((pc′v, pc′l), (null, t
′
l)) = CS [head ] pcl t tl @ pc′l u t′l CS ′ = CS [tail]

GR ` 〈CS ,M,L, pc, t〉 −→A 〈CS ′,M,L, (pc′v, pc′l), t
′
l〉

DWNRET

pc′l = γ(Rs1)
t′l = γ(Rs2) pcl v pc′l tl v t′l ISVALID(pc′l, t

′
l) L(rs1) t L(rs2) v pcl ∅ 6= CS [head]

GR ` 〈CS ,M,L, pc, t〉 −→A 〈CS ,M,L, (pcv + 4, pc′l), t
′
l〉

RAISELBL

¬INUPCALL
GR ` 〈CS ,M,L, pc, t〉 −→A 〈CS ,M,L, (pcv + 4, pcl), tl〉

OTHER ERROR

INUPCALL

GR ` 〈CS ,M,L, pc, t〉 −→A 〈CS ,M,L, pc, tl〉
UPRET ERROR

Fig. 7. Operational semantics for downgrading and label-mutating instructions given a call-gate registry GR.

public_val = 0
while (secret_1 < secret_2):
# do some slow computation
secret_1++

public_val = 1

Fig. 8. Secrets may be learned from the timing of the write to public_val.

To control timing channels, upcall instructions are given
an absolute end time and an ending program counter as
arguments. Once the end time is reached, the processor steps
to the end pcv . The instruction arguments are saved onto
a hardware call stack along with the caller’s pcl and tl.
Intuitively, this semantics preserves noninterference because

the subprogram cannot modify memory locations or labels in
a way that changes low observations. Since the completion of
the upcall is determined purely from information of at most
the level pcl, no termination channel influences subsequent
program steps.

In general, this simple approach will be difficult to use in
practice because it requires programmers or compilers to know
impractically cycle-accurate durations of program segments.
However, it does have a use case for running untrusted
functions. The upcall instruction can be used to create a
low-integrity sandbox that executes until the provided timeout
expires.

a) Using upcalls for timing mitigation: To support a
more flexible programming model, we also expose a generic
interface for handling returns from high contexts via an excep-



tion. When the timer completes, if the current instruction is not
an upret, the configuration steps to a known exception handler
pcv

7. Furthermore, when a label check fails inside of an upcall,
the program simply stalls (i.e., steps to a new configuration
where no architectural state has changed). Whichever of these
conditions causes the exception is recorded in a status register
(implemented as a CSR), with the high label of the upcall. In
Figure 7, we use the INUPCALL check to specify whether
or not a configuration is inside of an upcall by inspecting the
head of the call stack. If INUPCALL is true, then the error
can be handled normally, otherwise it should be squashed and
the program should stall.

INUPCALL ,

(((endpc, pc′l), (endt , t
′
l)) = CS [head ])

∧ (pc′l v pcl ∧ t′l v tl)

With this primitive, the timing mitigation algorithms de-
scribed in prior work [11], [21] can be implemented, enforc-
ing bounded leakage on information from the high context.
We note that this information release is still nonmalleable;
both robust declassification and transparent endorsement are
maintained under these mitigation mechanisms. Importantly,
our restrictions prevent attackers from exploiting mitigation to
exfiltrate arbitrary data.

Checking whether or not a high context subprogram failed
due to violating the label check restrictions also represents
a nonmalleable information release. The data in the status
register can be declassified or endorsed to reveal whether or
not a label check caused the subprogram to fail. Revealing
this information violates the termination sensitivity of the
subprogram noninterference. Although the subprogram cannot
modify any low state, information is transferred via termina-
tion.

b) Further upcall restrictions: upcall and dwncall in-
structions may not be executed inside an upcall. Intuitively, a
dwncall (which lowers pcl) would allow a process to produce
public outputs while still inside the upcall, leaking information
about its timing and progress. As mentioned, the arguments to
the upcall instruction must also themselves be labeled so that
they flow to the current pcl. Without this requirement, secret
or untrusted information could still influence the duration of
the subprogram.

c) Permanently raising context labels: In addition to the
upcall instruction, the pcl and tl can be raised by simply
writing to them (they are implemented as CSRs). In order to
preserve noninterference, the labels can only be raised in this
way. Once raised, a program can only lower its context labels
by executing a dwncall instruction. This limits the possible
leakages caused by the program to outputs produced by the
set of trusted functions which it is allowed to call. We discuss
this further in the next section.

7Termination behavior can be configured on a per-program basis; it is only
required that the configuration is completed using only information that is
low relative to the program’s original pcl.

E. Lowering context labels

The dwncall/dwnret instructions allow programs to call
into more-public and more-trusted contexts via call gates.
Call gates are essentially labeled functions that have been
pre-registered by a public–trusted entity. The call-gate registry
is effectively a read-only function lookup table.8 A call gate
registration contains a pc and tl; using a dwncall instruction
sets the current pc and tl to the gate’s values while pushing the
prior values onto a call stack. These instructions provide hard-
ware support for the privilege escalation features described
in prior work on security and information flow. In particular,
they closely resemble the primitives required to implement
gates from the Multics and HiStar operating systems [22],
[23]. In those systems, gates were used respectively to call
known functions with higher privileges than the caller, and to
implement synchronous RPC.

F. Exceptions and Asynchrony

We do not include exception configuration or handling in
our ISA formalism or formal security proof. In this section, we
describe how one could incorporate these features into our ISA
without compromising its security conditions. All exceptions
have a triggering condition and an exception program counter
(epc) that points to the interrupt service routine (ISR)9.

Trigger conditions can be specific to an ISA-extension or
architecture and are often defined by the hardware. The epc
is programmed by software and stored in a CSR. There are
additional exception-masking CSRs which software can use
to suppress the trigger conditions. In general, in order for an
exception to fire, the security label of all trigger conditions
(including masks) must flow to the current pcl; otherwise, an
attacker process may learn that an exception fired and deduce
some secret related to its cause. For arithmetic exceptions
such as integer overflow or divide-by-zero, this implies that
the instruction operands flow to the current pcl; if they don’t,
the exception must be suppressed. The label of the pc while
the ISR is actually handling the exception must also be lower
bounded by all trigger inputs and the label of the epc register
itself. In this way, if an exception trigger condition is secret,
its handler must be executing in a secret context and cannot
produce public outputs.

We believe the primary complications involved in inte-
grating exception handling into such an ISA are as follows.
First, it is not always clear how to label exception triggers.
For example, should an incoming network packet signal be
labeled public or could the timing of packet arrival give an
attacker information about co-resident processes? Likely, this
choice should be programmable by software depending on
the threat model. Secondly, depending upon how hardware
state is labeled, asynchronous exceptions (such as timers and
incoming network packets) may be frequently dropped or
delayed. In order to account for this, the processor and ISA

8Using rules similar to the uplbl instruction, call gate entries can also be
made more secret or less trusted without violating noninterference.

9This is not the same as the RISC-V epc CSR, we are paraphrasing the
exception handling mechanism for clarity.



may need to be modified to support batched handling of
exceptions along predetermined schedules within the CPU
itself. Additionally, it may be difficult to limit the number
of actual hardware signals that contribute to exception trigger
conditions in real implementations. For example, Van Bulck
et al. [24] found that Intel SGX implementations allowed the
currently executing instruction to complete before handling
certain exceptions. Waiting for instruction completion means
that most control signals in the CPU would influence the
exception trigger conditions. It is not always possible to
immediately transfer control to the ISR without waiting for
some state to clear in the CPU, and thus it may be challenging
to implement practical exceptions that execute in contexts that
have low confidentiality or high integrity.

V. ISA DESIGN DISCUSSION

Here we highlight some salient points of our design and
compare and contrast with other language-based IFC systems.

Compromised contexts and data undermine nonmalleabil-
ity: The original nonmalleability paper [14] identified restric-
tions on downgrading that are equivalent to our observation
that compromised labels cannot be downgraded to public
or trusted status. We additionally notice that executing in a
compromised context can unsafely leak information through
timing. Specifically, this can violate the non-occlusion princi-
ple of declassification described by Sabelfeld and Sands [25].
Consider the scenario where upcall operations implement
predictive mitigation, and therefore enforce nonmalleability
(rather than noninterference). Allowing a process to raise its
pcl and/or tl to a compromised level is unsound because it
implicitly allows that process to declassify arbitrary data. With
our restrictions, observing the duration of this subprogram
leaks only the caller’s secrets and is therefore robust; other-
wise any information could be implicitly declassified via this
channel.

Software can control how much information it leaks
through timing channels: Our ISA provides strong guarantees
with respect to timing. As long as a program keeps its
timing label low and executes fully low-deterministic upcalls,
it leaks no information through its timing behavior. However,
programs are not strictly bound by these restrictions. By
explicitly exposing the pcl, tl and upcall timing to software,
we grant programs the ability to weaken these restrictions
gracefully to suit their needs. This provides important flexi-
bility for situations where our threat model is overly strong or
when application-specific data may only require probabilistic
guarantees about timing consistency.

Limitations of Our ISA: While our ISA has strong
security guarantees and important security primitives, there is
much room for future research. First of all, our timing label
mechanism does provide a bound on which information may
be implicitly leaked through timing channels. However, this
coarse-grained approach could potentially leak any informa-
tion below the timing label. This behavior is unlike the dwnlbl
instruction, which explicitly denotes the memory location to
be downgraded. Our ISA also does not incorporate explicit

timing into any instructions other than upcall. While this lack
of explicitness is beneficial for remaining implementation-
agnostic, it does not give guidance on how to implement
secure and efficient hardware. Yu et al. [26] describe an ISA
which focuses on this performance aspect, by exposing more
microarchitectural information in their ISA. Future secure
ISAs and ISA extensions must be designed with both of
these goals in mind, potentially leading to new semantics or
completely novel timing-aware instructions.

Finally, our work only targets the single core subset of
the RISC-V ISA and does not provide guidance on how
to address multicore communication and interference. This
realm of interconnected computing devices communicating via
shared memory and coherence networks introduces many more
opportunities for timing interference and side channel com-
munication. Investigating this problem requires a significant
further effort in analyzing the semantics of existing memory
models, microarchitectural coherency guarantees and how to
efficiently incorporate IFC labels into these protocols.

VI. HARDWARE SEMANTICS AND PROPERTIES

As mentioned earlier, an actual hardware implementation
of this ISA will be a circuit that not only implements the
software-visible semantics but also refines the full CPU se-
mantics. We now discuss properties of a hardware implemen-
tation that are sufficient to guarantee the ISA-level security
conditions. Additionally, we discuss the implications of these
properties on hardware implementations and comment on what
techniques may be utilized to verifiably construct hardware
with said properties.

Property 1 (Deterministic Execution). For any configuration
C, and for all i ∈ {1, 2}

C −→µ 〈µi, tvi〉 =⇒ ((µ1 = µ2) ∧ (tv1 = tv2))

∧
C −→ Ci =⇒ C1 = C2

The operational semantics for the transition function on
microarchitectural states must be deterministic. Furthermore,
we assume that the full semantics which determines when to
stall the processor is also deterministic.

We believe that this property can also be relaxed to allow
for sources of nondeterminism (such as changes in clock fre-
quencies, random number generators, etc.) as long as this non-
determinism is truly generated by noise or other public/trusted
factors. Defining exactly what factors are public/trusted is a
complex decision related to particular threat models and is out
of scope for this paper.

Property 2 (Single-Step Machine Noninterference). Given a
set of low labels in the security lattice, L,

∀C, i ∈ {1, 2}.
(C1 =L C2) ∧ (Ci −→ C ′i)

=⇒ ((µ′1 =L µ
′
2) ∧ (t′v1 =L t

′
v2)).



The hardware implementation must enforce a timing-
sensitive noninterference condition for microarchitectural state
for all transitions. With this definition, the label of t effectively
bounds which hardware state may affect the timing of opera-
tions (including the decision to stall or not stall computation).
The above property also implies that −→µ enforces timing-
sensitive noninterference on µ and t. Note that this noninter-
ference condition only applies for microarchitectural state, not
architectural state. The architectural state may be downgraded
using the downgrade instructions in our ISA.

The above definition of timing-sensitive machine nonin-
terference is actually overly strong and we can substitute a
slightly weaker property. t is interpreted as a global clock;
however, this requirement enforces that hardware end instruc-
tions at exactly the same real time whenever t′l ∈ L. For most
cases this isn’t a problem, since tl ∈ L and therefore both
configurations start executing the instruction at the same time.
It is not unreasonable for hardware to therefore ensure that
they end at the same time by using only low-labeled state to
influence their duration.

However, some instructions can lower tl thereby creating a
scenario where tl ∈ H and t′l ∈ L. In our ISA, dwncall can
create this scenario and would theoretically require that two
executions always enter the call gate at the same time, even
when they previously had high timing labels. Since tv1 6=
tv2 there is no way for a CPU to ensure t′v1 = t′v2. Luckily,
real time equivalence is not really the guarantee we need. We
just need the duration of the instructions to be equal in both
configurations, if t′ ∈ L. For all of the instructions in our
ISA, this results in exactly the same security guarantees that
we have claimed in Section VII. Below is the amended Single-
Step Machine Noninterference property:

∀C, i ∈ {1, 2}.
(C1 =L C2) ∧ (Ci −→ C ′i)

=⇒ ((µ′1 =L µ
′
2) ∧ (t′l ∈ L =⇒ t′v1 − tv1 = t′v2 − tv2))).

Property 3 (Computability of Label Lookups).

∃Γ, ∀C, n ∈ dom(µ),Γ(C)(n) is computable

Property 3 has so far been an implicit assumption. The
function Γ is parameterized on all of the configuration state;
it represents a function that must be computed at run time
and therefore must be implemented in the microarchitecture.
In combination with Property 2, this implies that the process
of looking up microarchitectural labels does not violate nonin-
terference [27]. It also implies that, after a configuration step
C −→ C ′, Γ determines low equivalence by evaluating labels
of µ using C ′, not C (we formalize low equivalence further
in Section VII).

Intuitively, the above properties suggest that there is
no hardware-level information flow which violates timing-
sensitive noninterference except for flows that are explicitly
induced by software instructions. For instance, declassifying
a secret memory location, loc, with a dwnlbl instruction
can only declassify microarchitectural state that specifically

represents loc’s data. Section VII discusses the ISA-level
security properties that we can obtain, given these hardware
properties, in more detail.

A. Implications for Hardware Implementations
Property 1 can be easily satisfied, for the most part, as

processors are typically implemented as deterministic digital
circuits. While some features require a notion of nondetermin-
ism (such as random number generators or external sensor in-
puts), these can be modeled as the I/O to a deterministic digital
circuit. In the design, one must label and build deterministic
circuitry used to process these values (e.g., a buffer containing
input packets from the network) but the non-determinism of
the outside system has no direct impact on the security of the
processor itself. As discussed in Section IV-F, this may lead to
different low-level behaviors and performance characteristics
in real implementations.

Furthermore, even features with somewhat unpredictable
behavior can be modeled deterministically as long as their
inputs are deterministic. For example, DVFS [28] modulates
clock frequency during execution and can change the wall-
clock time of code execution. However, if those modulation
decisions are made via a digital circuit and their inputs
are deterministic, we can model DVFS as software-visible
architectural state and guarantee that its use does not violate
our security conditions.

Property 2 requires a processor to be designed to remove
timing channels through its microarchitecture. A recent pub-
lication [7] shows that such a tagged processor with strong
control for microarchitectural timing channels and potentially
reasonable overheads is feasible. Yu et al. [26] have also shown
recently that it is feasible to build a modern CPU with specu-
lation, out-of-order execution and other microarchitectural op-
timizations while enforcing probabilistic-noninterference [29].
These results provide evidence that it is possible to build effi-
cient secure hardware, with the appropriate ISA abstractions.

Property 3 suggests that processor microarchitecture needs
to be designed in a way that allows the security label of
microarchitectural state to be determined. This property can
be achieved by either statically labeling hardware modules
at design time or by adding hardware tags to track runtime
labels. Recursively, these tags are also microarchitectural state
and their labels must also be computable. Therefore, real
implementations will use both of these techniques (static vs.
dynamic labels) since Γ is only computable if it eventually
reaches a fixed point.

Our ISA provides hardware designers with the flexibility
to choose how to realize timing-sensitive noninterference.
For example, in order to remove cache timing channels, a
processor designer may: statically partition a cache; dedicate a
cache to one security level and flush it when the security level
is lowered; bypass the cache; or even introduce scratchpad
memory with a fixed latency, etc.

B. Enforcing Timing-Sensitive Noninterference in Hardware
For strong security assurance, we ideally want to formally

enforce the properties needed for a secure hardware imple-



mentation. There exist several efforts to develop security-
annotated Hardware Description Languages (HDL) that can
provide timing-sensitive noninterference guarantees, similar to
the one we specify here [5], [30], [31]. Previous studies show
that these security-annotated HDLs can be used to express
realistic security policies and implement complex circuits that
satisfy them [6], [7], [32], [33].

The primary challenge with proving Property 2 by using
secure HDLs is that these languages do not have separate
notions of “architectural” and “microarchitectural” state; the
entire circuit is represented as a single state machine. Phrased
another way, hardware and software are concerned with differ-
ent definitions of observability; in the hardware description, all
state is considered observable, even though software can only
directly observe architectural state. This disconnect makes
proving a hardware implementation correct challenging for a
few specific reasons.

First, it is impossible to prove that an implementation that
supports ISA-level downgrading provides microarchitectural
noninterference. Any implementation of our ISA must contain
downgrades at the HDL level, which correspond to those
required to implement downgrading instructions. However,
the noninterference guarantees provided by these HDLs are
completely obviated by including downgrades; they cannot
ensure that the information being downgraded is limited only
to architectural state.

A second issue with proving hardware implementations
secure is the difference in label equivalence models. We
assume that an attacker cannot read the value of a secret label,
but can observe the fact that the label is secret. In the hardware,
any location which stores a label value must itself be labeled.
Given the attacker model above, it is unclear how to write
down the label of this location. If we label it as public, then
the HDL will allow us to define hardware that leaks the values
of secret labels to attackers. If we label it as secret, then the
HDL will conservatively disallow some safe label checking
operations.

We believe that these problems may be solved by ap-
plying prior techniques for verifying CPU correctness (such
as Pipecheck and RTLCheck [34], [35]). Moreover, these
approaches could be augmented with formal verification tools
specifically designed for IFC. For instance, Nickel [36] is a
framework for proving noninterference that uses application
specific definitions of observational equivalence. Investigating
how to utilize these approaches to prove microarchitectural
noninterference while supporting software-level downgrading
and notions of observability is an interesting open research
question.

VII. ISA SECURITY PROPERTIES

This section describes some of the security properties of
this ISA and their performance and usability tradeoffs.

a) Low Equivalence: We start by formalizing the
low equivalence of configurations, relative to a set of low
labels, L. This models the ability of an observer who can
only differentiate between low states; two low-equivalent

configurations appear identical to a “low observer”. First, we
define an equivalence operator on label mappings to formalize
our notion that attackers cannot observe exact label values.

Definition 5 (Label Lookup Domain Equivalence). For an
attacker inducing label sets P , S, U , and T

L1 ≈ L2 ⇐⇒ ∀n ∈ dom(L).

(L1(n) ∈ P ⇐⇒ L2(n) ∈ P) ∧
(L1(n) ∈ T ⇐⇒ L2(n) ∈ T )

We define the ≈ relation on the labels of microarchitecture
similarly.

Figure 9 shows the definition of low equivalence for all
configuration components. We assume that L,M, µ and Γ
are total functions so that domain equality is implicit. The
requirements of low equivalence explicitly require that “label
lookups” for both architectural and microarchitectural state
return equivalent but not equal values for high labels. Call
stack low equivalence requires that all entries with low pcl
are in the same position in the stack and are themselves low-
equivalent. By construction, all low entries must be at the head
of the stack10 so it is sufficient to check that the low prefixes
of each call stack are equivalent.

Definition 6 (Call Stack Prefix Low Equivalence).

CS 1 uLCS 2 ⇐⇒
(1) CS 1 = ∅ ∧ ∀(pci, ti) ∈ CS 2, pc

i ∈ H
or

(2) CS 2 = ∅ ∧ ∀(pci, ti) ∈ CS 1, pc
i ∈ H

or

(3) CS 1[head] = (pc1, t1) =L (pc2, t2) = CS 2[head]

∧ CS 1[tail] uL CS 2[tail]

b) Security Guarantees: All of the theorems in this sec-
tion have full proofs, which can be found in the accompanying
technical report [18]. First, we show that executing programs
that do not contain downgrade or call-gate instructions pre-
serve noninterference.

We use the term valid configurations to refer to configura-
tions that were initialized with reasonable values. Specifically,
the configurations satisfy the ALL PC and ALL T requirements
and the initial call stacks are empty.

Theorem 1 (Noninterference Modulo Downgrading and Call
Gates).

For any two valid configurations, C1 and C2 and any low
set of labels, L, where no instruction is a dwnlbl, upcall,
upret-done, dwncall or dwnret:

(Ci −→∗ C
′

i) ∧ (C1 =L C2) =⇒ C
′

1 =L C
′

2

where −→∗ is the reflexive, transitive closure of −→.

10This is enforced by preventing dwncalls while inside of an upcall.



pc1 =L pc2 ⇐⇒ ((pcl1 ∧ pcl2) 6∈ L) ∨ (pc1 = pc2)

t1 =L t2 ⇐⇒ ((tl1 ∧ tl2) 6∈ L) ∨ (t1 = t2)

L1 =L L2 ⇐⇒ (L1 ≈ L2) ∧ (∀j ∈ dom(L). L(j) ∈ L =⇒ L1(j) = L2(j))

M1 =L M2 ⇐⇒ (L1 ≈ L2) ∧ (∀j ∈ dom(M). L(j) ∈ L =⇒ M1(j) = M2(j))

µ1 =L µ2 ⇐⇒ (Γ(C1) ≈ Γ(C2)) ∧ (∀n ∈ dom(µ). Γ(C)(n) ∈ L =⇒ µ1(n) = µ2(n))

CS 1 =L CS 2 ⇐⇒ CS 1 uL CS 2

C1 =L C2 ⇐⇒ (pc1 =L pc2) ∧ (t1 =L t2) ∧ (M1 =L M2) ∧ (µ1 =L µ2) ∧ (CS 1 =L CS 2)

Fig. 9. Low Equivalence of Configuration Components, relative to “low” labels, L.

The proof is a straightforward structural induction on the
operational semantics of the processor. By assuming Property
2, essentially all of the work in this proof requires proving
noninterference of the −→A semantics.

We next extend Theorem 1 to prove noninterference even
when using upcall instructions.

Theorem 2 (Noninterference Modulo Downgrading).
For any two valid configurations, C1 and C2, and any low

set of labels, L, where no instruction is a dwnlbl, dwncall
or dwnret.

(Ci −→∗ C ′i) ∧ (C1 =L C2) =⇒ C ′1 =L C
′
2

In the scenario covered by Theorem 1, once the pcl was
high, it could never be lowered again. That makes the nonin-
terference proof trivial but also limits functionality. To prove
Theorem 2, we show that all operational steps taken while
an upcall is on the call stack can be modeled as a single
operational step to low-equivalent configurations. We can show
this since the end configuration of the upcall is predetermined
by low-equivalent state and high pcs are noninterfering (i.e.,
programs executing with a high pc cannot modify any low
visible state).

Note that while this theorem is termination-sensitive , it
is not timing-sensitive. In the case where tl 6v pcl, attackers
may make observations about high state based on the timing
of writes to low state. We present a corollary that provides
timing sensitivity.

Corollary 1 (Timing-Sensitive Noninterference Modulo
Downgrading).

If (pcl ∈ L =⇒ tl ∈ L) for all intermediate configurations
and upcall regions have fixed durations, then Theorem 2
provides timing sensitivity.

This corollary ensures that any time that low writes are
possible, the attacker will observe them occurring at the same
time. Furthermore, the duration of high call gates will be
determined by low information.

As defined in Section II, nonmalleability is essentially
defined as maintaining both robust declassification and trans-
parent endorsement. Even with no syntactic restrictions (unlike
the prior theorems) our ISA enforces nonmalleability.

# PCLBL = TLBL = (TRUSTED, PUBLIC)
# L(key) = L(s0) = (TRUSTED, SECRET)
# L(in0) = (TRUSTED, PUBLIC)
upcall est, ST, ST, enc_end
----------------------------
# PCLBL = (T,S), TLBL = (T,S)
andi in0, in0, MASK
xor s0, key, in0
lw s0, 0(s0) # (a)
andi s0, in0, mask
lw s0, 0(s0) # (b)
declreg s0, PUBLIC
upret
----------------------------
enc_end:

Fig. 10. Mitigated AES.

Theorem 3 (Nonmalleable Information Flow). For attacker
induced high label sets S and U and their respective com-
plements, P and T and valid configurations, ∀{s, u} ∈
{1, 2}, Csu

((Csu −→ C ′su) ∧ (C1u =P C2u) ∧ (Cs1 =T Cs2))

=⇒
((C ′11 =P C

′
21 =⇒ C ′12 =P C

′
22)

∧
(C ′11 =T C

′
12 =⇒ C ′21 =T C

′
22))

Assuming Theorem 2, we only need to reason about instruc-
tions which violate information flow: dwncall and uplbl. The
key restrictions which provide nonmalleability are those that
prevent the pcl or tl from becoming compromised and the
restriction that compromised data is never downgraded.

VIII. PROGRAM EXAMPLES

We now describe examples of how to use our ISA features
in practical scenarios.

AES is a well known encryption algorithm which does not
require the program to branch on any secrets [37]. Instead,
AES uses a public lookup table indexed by computation
involving both the secret key and public input. This behav-
ior of executing secret-dependent memory accesses makes it



susceptible to a number of timing-channel attacks [38]–[42],
some of which are similar to the vulnerability in Figure 3.

Figure 10 is a toy version if this AES-style lookup table ac-
cess in our ISA. Without mitigation techniques, the execution
of the second load (b) could be faster if it accesses the same
cache line from (a). Similarly, another program may also infer
the value of the secret through cache contention.

One existing software-based mitigation technique for pre-
venting this cache timing channel is to preload the entire
lookup table ahead of time [43]. Preloading allows a cache
implementation to fill its entries with useful data based only
on public addresses. However, this approach is not guaranteed
to be secure on normal hardware; if a cache were too small
to contain the entire table (or evicted entries for any other
reason), it is possible that some lookups would trigger misses,
thereby leaking information with an unexpectedly slow dura-
tion for certain keys. Other efforts to eliminate these problems
with AES still rely on the assumption that certain instructions
are constant-time [44].

Our ISA enables software to control microarchitectural
timing channels in a principled manner. On hardware im-
plementing our ISA, the secret-dependent loads in Figure
10 cannot affect public microarchitectural state and therefore
cannot leak secret information through memory contention.
Additionally, the strategy of preloading the cache can still
improve performance on some implementations. One potential
CPU implementation might maintain private and public cache
partitions. During the preload phase, public and trusted code
fills up the public cache partition with some or all of the
AES table. During the encryption phase, secret code can read
those entries but cannot modify them, instead making updates
only to the private cache partition. This implementation would
allow for a more secure and efficient AES execution. Never-
theless, the duration of the entire execution could leak some
information about the secret key; this example also shows how
software can use an upcall instruction to obscure that duration
by providing an explicit end time (via the est argument in the
example’s upcall).

A. Password Checker

In this example, we show how to implement a nonmalleable
password checker which can be called by untrusted users with
the dwncall instruction. The code for this checker is shown
in Figure 11. This program starts in a public and untrusted
context, which would be typical for an unauthenticated user.
The untrusted user generates their guess and puts it into the
register called guess. Then they use the dwncall instruction
to call the check_pass function and gain high integrity. This
is analogous to executing a system call in a typical operating
system, where the user program is linked with trusted libraries
and jumps into that code.

Once the check_pass function has started, it must endorse
the user’s guess, since a trusted pc cannot branch on low-
integrity data. In order to compare the secret password value
with the guess, the program executes an upcall instruction to
enter a timing-mitigated region. Inside that region, the program

# PCLBL = TLBL = (PUBLIC, UNTRUSTED)
# L(guess) = (PUBLIC, UNTRUSTED)
# L(pass) = (SECRET, TRUSTED)
dwncall check_pass
===============================
# PCLBL = TLBL = (PUBLIC, TRUSTED)
check_pass:
endoreg guess, TRUSTED
upcall est, ST, ST, end_check

-------------------------------
# PCLBL = TLBL = (SECRET, TRUSTED)
beq guess, pass, success
li res 0
upret

success:
li res 1
upret

-------------------------------
end_check:
declreg res, PUBLIC
dwnret

Fig. 11. Password checking in the proposed ISA.

computes either a 1 or 0 based on whether or not the guess
was right or wrong, and then returns. Finally, at the end of the
check_pass function, the result is declassified to public and
the call gate exits back to the untrusted context.

If an untrusted user were to execute the check_pass func-
tion like a normal function call, their attempts to endorse
their own guess and upcall into a secret and trusted state
would both fail. This example illustrates the nonmalleability
guarantees and how trusted system code can be resident in the
system but only accessible via call gates.

IX. RELATED WORK

a) Software Information Flow Control: Software-based
IFC has been applied in many settings with the goal of
eliminating timing channels [11], [17], [45]–[50]. Kashyap
et al. [48] discuss various software strategies for enforcing
timing-sensitive noninterference. In particular, they focus on
using lattice scheduling to ensure that the ordering of vis-
ible events does not leak secret information. Parsec [46]
is a language for concurrent programming which, given a
race-freedom analysis, ensures observational determinism, a
noninterference condition for concurrent programs. Bedford
et al. [17] have also shown how a hybrid IFC system can
provide progress-sensitive noninterference, a weaker condition
than timing sensitivity; it does not leak information based on
which sets of outputs a program successfully produces. Secure
multi-execution, where a program is executed multiple times
at varying security levels, has also been used to prove timing-
sensitive noninterference [50]. LIO [47] is a Haskell-based
language extension for mitigating both external and internal
channels through the use of monadic computation and IFC.
Of the aforementioned systems, only LIO handles external
timing channels. Like our ISA, LIO provides a dynamic
semantics for enforcing noninterference but lacks features such



as downgrading and integrity tracking.11 Additionally, it is a
high-level language which requires a software runtime for its
security, making it unsuitable as an ISA description.

b) Hardware-level information flow control: IFC tech-
niques have also been used to build timing-safe hardware.
While not focused on timing, Suh et al. [52] showed that pro-
cessors could implement efficient information flow tracking.
Caisson and Sapper [6], [33] provided a nested state machine
abstraction for circuit design and proved that hardware built
using those tools enforced timing-sensitive noninterference.
More expressive HDLs that provide similar security guarantees
have also been developed using dependent types [30], [53].
The Hyperflow processor [7] is a fully-featured implementa-
tion of a RISC-V CPU developed using these techniques.

c) Secure ISAs: While many of the above HW IFC
systems presented CPUs and ISAs, they were focused on se-
curity guarantees about the circuits. None of them have proved
security results for programs executing on top of their example
abstractions. Ge et al. [12] have defined a set of properties
they argue post-Spectre ISAs (called aISAs) must enforce to
provide efficient, timing-sensitive security. These properties
primarily focus on prescribing how an operating system can
interact with the hardware to provide timing security. They
refer to concrete mechanisms such as hardware partitioning
and time multiplexing rather than the security properties that
these mechanisms should aim to enforce. Our ISA provides
more fundamental guarantees than those suggested in their
work, but real implementations of our ISA would likely exhibit
many of the properties they list.

Yu et al. [26] have built an ISA extension for “oblivious
computing” and have proved probabilistic noninterference
results. They have also built and measured the performance
of a speculative, out-of-order processor using this ISA and
demonstrated its performance improvements over more con-
servative techniques. Their ISA treats security as an optional
component which software may opt-in to by labeling instruc-
tion operands as public or secret. This is promising evidence
of the practicality of efficient microarchitectures for secure
ISAs.

The work of Zhang et al. [11] on language-based timing
mitigation defines a software–hardware contract based on
“write labels” and “read labels” that almost directly parallel
our pcl and tl. However, that contract requires well-typed
programs that correctly specify write and read labels; the
hardware itself is not assumed to enforce any restrictions on
how these labels change over time. Furthermore, our ISA
considers both confidentiality and integrity while enforcing
nonmalleable downgrading. We do not require a fully trusted
entity to perform timing mitigation: any upcall caller can
implement their own mitigation algorithm in their own context.

d) OS-level information flow control: Asbestos [54] and
HiStar [23] are two well known IFC operating systems. They
do not assure timing safety. However, HiStar’s notion of gates
informed our call gate mechanism, but the restrictions on gates

11Follow-up work (e.g., [19], [51]) addresses some of these features.

and the security guarantees differ from ours. NickelOS [36]
has been recently developed using intransitive noninterference,
which allows more flexible security policies than traditional
IFC. However, NickelOS is not timing-sensitive and focuses
on information flow exposed through OS APIs.

X. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an ISA that defines a
contract between software and hardware that defines how
information may or may not affect the timing of instruc-
tions. Importantly, it provides timing safety without requiring
that instructions explicitly execute in worst-case time. As
a byproduct, our proofs delineate conditions that hardware
should satisfy, thus providing guidance to hardware designers.

We foresee many avenues for further research in the domain
of timing secure ISAs. Modeling more ISA features such as ex-
ceptions, memory models, and other concurrency mechanisms
can provide evidence toward the practicality of this approach
to ISA design. Furthermore, it will help expose more potential
side channels that exist throughout the complex environment
of multicore processors.

Given this foundation, we can develop new instructions or
instruction semantics that expose different timing characteris-
tics, such as fixed-latency scratchpad memory [55] or other
“oblivious” computation [26]. Experimenting with these new
ideas in the context of a nonmalleable ISA can also ensure
that the security guarantees hold end to end.

The largest open question is how to formally verify that
hardware implementations satisfy the properties defined in
Section VI, allowing us to connect security guarantees of
high-level languages and verified operating systems to the
actual behavior of the underlying hardware. We think there
are many opportunities to improve existing secure HDLs for
finer grained downgrading (of both data and time), and to
adapt hardware functional verification techniques to prove IFC
properties of processors.
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