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ABSTRACT

To address transient execution vulnerabilities, processor architects

have proposed both defensive designs and formal descriptions of

the security they provide. However, these designs are not typically

formally proven to enforce the claimed guarantees; more impor-

tantly, there are few tools to automatically ensure that Register

Transfer Level (RTL) descriptions are faithful to high-level designs.

In this paper, we demonstrate how to extend an existing security-

typed hardware description language to express speculative security

conditions and to verify the security of synthesizable implementa-

tions. Our tool can statically verify that an RTL hardware design

is free of transient execution vulnerabilities without manual proof

effort. Our key insight is that erasure labels can be adapted both

to be statically checkable and to represent transiently accessed

or modified data and its mandatory erasure under misspeculation.

Further, we show how to use erasure labels to defend a strong for-

mal definition of speculative security. To validate our approach,

we implement several components that are critical to speculative,

out-of-order processors and are also common vectors for transient

execution vulnerabilities. We show that the security of existing de-

fenses can be correctly validated and that the absence of necessary

defenses is detected as a potential vulnerability.
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1 INTRODUCTION

Spectre and Meltdown [31, 40] have exposed significant timing

channel vulnerabilities ingrained in the designs of modern pro-

cessor microarchitectures. In response, the software security com-

munity has developed a number of mitigations, formal security

conditions, and principled defenses [7, 21, 22, 35, 47]; however,

most of this work requires assuming certain microarchitectural

behaviors or models. To make the job of software easier, architects

have proposed many hardware defenses [1, 2, 32, 37, 39, 49–51, 53]

that provide stronger speculative security guarantees, including

invisible speculation [51], transient non-observability [32], and

strictness ordering [1].

Implementations defending these conditions can still allow most

speculative execution to minimize run-time overhead, while pro-

viding reasonable semantics on which secure software can be built.

Despite this plethora of designs, few efforts have tried to ensure that

synthesizable implementations of these defenses actually uphold

their claimed security guarantees.

One established technique for verifying security properties of

Register Transfer Level (RTL) hardware descriptions is Information

Flow Control (IFC) [15, 59]. In fact, several aforementioned defenses

claim to provide IFC-inspired security conditions [9, 21, 22, 32,

54]. We propose using an IFC type system for an RTL Hardware

Description Language (HDL) to statically verify that the hardware

synthesized from the design is guaranteed to be free of transient

execution vulnerabilities. However, this task is not as simple as

implementing a speculative processor in an IFC-typed HDL [19];

limitations of the existing languages make it a challenge to defend

speculative noninterference and related security conditions.

In this work, we address these limitations and show how an

IFC-typed HDL can be extended to guarantee speculative security.

Specifically, we adapt erasure labels [10], which express a limited

form of temporal IFC policies, to an RTL language. Erasure labels

allow us to prevent misspeculated data from persisting and influenc-

ing non-transient execution, without needing an explicit functional

specification for “misspeculation”. We also incorporate a novel form

of permissive dynamic label checking to enable dynamic scheduling

of concurrent instructions. This is one of the first efforts to statically

check RTL hardware designs for speculative security guarantees,

and the first that does not require significant manual proof effort

by the designer. This paper describes our contributions:

• Section 2 provides background on transient execution vulnera-

bilities and also the capabilities and limitations of some existing

IFC tools for RTL design.

https://doi.org/10.1145/3576915.3623074
https://doi.org/10.1145/3576915.3623074
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• Section 3 describes SpecVerilog, our extension to an existing

IFC HDL. We also demonstrate that erasure labels in SpecVerilog

can be employed to detect transient execution vulnerabilities

and verify secure mitigation mechanisms.

• Sections 4 and 5 provide formal descriptions of SpecVerilog’s

security guarantees and how they can be instantiated to prevent

transient execution vulnerabilities in an out-of-order processor.

• Sections 6 and 7 describe the SpecVerilog implementation and

several case studies implemented in SpecVerilog.

• The remainder of the paper relates prior work to SpecVerilog

and discusses its design, benefits, and future opportunities.

The SpecVerilog compiler is publicly available for download [55].

2 BACKGROUND

2.1 Transient Execution Vulnerabilities

Speculation is a critical performance feature in modern processors,

which introduces transient instructions into the processor pipeline.

Transient instructions are not part of the intended execution and

thus are not allowed to influence any architectural state. Neverthe-

less, transient execution vulnerabilities such as Spectre, Meltdown,

and a host of others [31, 40, 45, 46], exploit the presence of transient

instructions to access otherwise-protected data. Such data can then

be leaked through well known microarchitectural side channels. To

avoid performance degradation, most defenses to these vulnerabili-

ties seek to allow as much speculation as possible while limiting

their effects on microarchitectural state. As understanding of these

attacks has progressed, researchers have found an ever-increasing

number of side channels for transiently accessed data. Some are

very subtle, such as speculative interference attacks [5], which leave

little to no lasting trace within microarchitectural state. In turn,

new attacks prompt a new wave of defenses or other modifications

to close the newly discovered holes.

We seek to end the cycle of attack discovery and defense devel-

opment by comprehensively preventing transient execution vul-

nerabilities in synthesizable RTL designs. We extend existing IFC

techniques for HDLs to safely reason about the potential influence

of speculative execution. In this way, any design accepted by our

tool is guaranteed to be free of transient execution vulnerabilities—

even previously undiscovered ones.

2.2 Information Flow Control HDL

Information flow control is a technique for enforcing policies that

govern the flow of information, especially policies about confi-

dentiality and integrity [15, 28, 58, 59]. These policies are often

formalized as some form of noninterference, which states that high

system state does not influence low state. In the case of confidential-

ity, high corresponds to secret and low to public. When applied to

RTL languages, in which the passage of time is explicit, IFC provides

timing-sensitive security guarantees. For instance, IFC has been

used to implement timing channel resilient hardware modules, from

encryption units that protect keys [25, 43] to processors [19, 42, 43]

that provide architecture-level security guarantees.

Static IFC tools rely on designer-provided annotations to cap-

ture intended security policies. In the case of confidentiality, the

designer annotates the secrecy of the system state. The tools then

check that the described hardware design obeys the implied policy,

and reject unsafe designs. In this work, we build upon and extend

one such tool, SecVerilog [59], which uses a type system to check se-

curity annotations (labels) on hardware at compile time. We discuss

alternative tools for checking hardware IFC properties in Section 8.

The following code is a simple example of the checks made by

SecVerilog’s IFC type system.

1 input d1 { SECRET } ;
2 input d2 { PUBLIC } ;
3 reg o1,o2 { PUBLIC } ;
4 always@( * ) begin
5 o1 = d1; //FAIL! SECRET ->PUBLIC
6 if (d1) o2 = d2; //FAIL! Implicit Flow from d1
7 else o2 = 0; //FAIL! Implicit Flow from d1
8 end

The code uses two security labels PUBLIC and SECRET, where secret

information is not allowed to leak to public locations. SecVerilog

prevents direct illegal information flows, such as at line 5, by en-

suring that the operands on the right-hand side of an assignment

are permitted to flow to the destination on the left-hand side. Ad-

ditionally, SecVerilog prevents implicit flows, as in lines 6–7, by

ensuring that expressions used in branch conditions may flow to

conditionally assigned destinations.

2.3 Dynamic Labels

SecVerilog is a static tool, but it allows policies that depend on

run-time behavior. It uses dynamic labels [60]: security annotations

that are determined by run-time values. In a security-typed HDL

like SecVerilog, dynamic labels effectively allow the same physical

register to store data from different security levels over time. In

the following snippet, register mode describes the secrecy of the

contents of the register data.

1 // L(0) = PUBLIC; L(1) = SECRET
2 input new_mode { PUBLIC } ;
3 reg mode { PUBLIC } ;
4 reg data { L(mode) } ;

The function L(x) is a dynamic label that maps run-time values

onto security levels as described on line 1. For instance, whenever

mode stores the value 1, we know that data stores secret information.

This kind of dynamic label can model an architecture like ARM

TrustZone [33], where the processor can switch between secure

and insecure worlds [18].

Since a given register’s security level can change when the clock

ticks, to check non-blocking assignments, SecVerilog considers

the destination’s next-cycle label. Using the types above, we can

consider how SecVerilog checks a mode change:

1 reg data { L(mode) } ;
2 always@(posedge clk) begin
3 mode <= new_mode;
4 data <= (new_mode < mode) ? 0 : data;
5 end

SecVerilog requires that values being written into register data are

allowed to flow to L(new_mode), since that will be the next-cycle label

of data. For instance, if mode is currently 1 (and thus data is secret),

but new_mode is 0 (and thus data will become public), SecVerilog

only accepts the design if the contents of data are overwritten with

public information. Line 4 includes the dynamic check necessary

for SecVerilog to conclude that the design is secure.

Although powerful, dynamic labels can also introduce subtle

security vulnerabilities. One such problem is the “label of labels”
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consideration [27]; in our prior example, mode itself is a run-time

signal and thus has its own label. Therefore, comparisons on dy-

namic labels can cause implicit flows. SecVerilog avoids these issues

with well-formedness assumptions.

Nevertheless, SecVerilog’s dynamic labels cannot sufficiently ex-

press and defend speculative security conditions. When speculation

is involved, the true security level is only determined in the future

when the transient state is either invalidated or affirmed.

2.4 Speculative Noninterference Conditions

Prior work has established a variety of noninterference conditions

intended to prevent transient execution vulnerabilities [21, 32, 54].

At a high level, these conditions guarantee that speculatively ac-

cessed data does not influence attacker-visible state. The defini-

tions of “attacker-visible” and the scope of which speculatively

accessed data is protected vary slightly in each, leading to stronger

or weaker security guarantees. For this work, we consider a strong,

timing-sensitive noninterference condition similar to transient non-

observability [32], we call Transient Noninterference. We define it

formally in Section 5. Informally, transient non-observability states

that transiently accessed instruction operands should not influence

the time at which non-transient instructions commit.

To defend Transient Noninterference with an IFC system, we

need to annotate hardware state with security labels that describe

its speculative status. Labels reference an underlying lattice of

security levels that are used to define allowed influence between

labels. The lattice ⊑ relation (read: “flows to”) dictates the direction

information is allowed to flow. A first attempt at such a lattice might

be the following:

COMMIT ⊑ SPEC ⊑ MISS

This set of levels allows committed data to influence everything;

misspeculated data cannot influence anything; and unresolved spec-

ulative data is in the middle. Unfortunately, this set of levels re-

quires violating noninterference to promote data from SPECULATIVE

to COMMITTED once we learn the speculation was correct. For in-

stance, the following example implements logic to relabel data upon

discovering misspeculation or commitment, but fails to type-check:

1 //S(0) = COMMIT; S(1) = SPEC; S(2) = S(3) = MISS
2 wire specCorrect, specMiss { COMMIT } ;
3 reg [1:0] isSpec { COMMIT } ;
4 reg specData { S(isSpec) } ;
5 always@(posedge clk) begin
6 if (specCorrect)
7 isSpec <= 0; //FAILS: Downgrades SPEC to COMMIT
8 else if (specMiss)
9 isSpec <= 2; //OK: Upgrades data to MISS
10 end

Line 7 fails to type-check in SecVerilog. The value of specData

stays the same, but its label S(isSpec) changes since the value of the

isSpec register does change. Since its new label is lower in the lattice,

this assignment appears to SecVerilog to violate noninterference.

In the current cycle, specData may be speculative, and in the next

cycle the same data will be treated as committed. This is exactly

the designer’s intention, but it is not captured by the labels used

and cannot be verified as safe by SecVerilog without voiding the

language’s security guarantees.

Other attempts to map speculative security conditions onto

SecVerilog’s labels are equally fraught. For instance, consider an-

other dynamic label that only upgrades data upon discovering

misspeculation:

1 //S(0) = COMMIT; S(1) = MISS;
2 wire isMiss { COMMIT } ;
3 reg commData { COMMIT } ; reg specData { S(isMiss) } ;
4 always@(posedge clk) begin
5 //If not speculative RIGHT NOW ,
6 //we can forget about the dynamic label
7 commData <= (!isMiss) ? specData : commData;
8 end

Line 7 illustrates the issue with this labeling scheme: the semantics

of S(x) allow specData to influence committed state on any cycle

where isMiss is false. However, isMiss may become true in the

future, and thus commData may contain misspeculated state.

This problem cannot be solved with conventional IFC labels be-

cause they cannot reason about future events. SecVerilog’s dynamic

labels must immediately resolve to a specific security level since

they are functions of the current state. Therefore, in order to pre-

cisely encode the concept of misspeculation, one would need to

label data with a function that computes the correctness of a spec-

ulative prediction from the current circuit state. Defining such a

function is unwieldy and infeasible in practice. For typical instances

of speculation, it would require dynamic labels to depend on the

future contents of arbitrary memory locations, which cannot be

predicted in general. And full-blown formal verification would be

needed to reason about allowed influence using such labels, losing

the scalability of SecVerilog’s lightweight symbolic reasoning.

3 ERASURE POLICIES & SECURE

SPECULATION

Our key insight is that we can enable tractable reasoning about

speculative correctness in SecVerilog by extending it with erasure

policies [11, 12]. An erasure policy is a form of information-flow

policy that allows specifying when data must be removed or deleted.

For example, a software web app might enforce the erasure policy

that a user’s session data must be deleted after their session expires.

In the context of processor development, erasure policies can be

used to specify that transiently accessed data (and anything derived

from it) must be deleted after misspeculation is discovered. In order

to express speculative security conditions, we incorporate erasure

policies into an extension of SecVerilog that we call SpecVerilog.

SpecVerilog supports erasure policies through erasure labels,

security annotations that can express erasure policies in an IFC

system. We adapt prior work on software erasure labels [11] to RTL

hardware design. Our novel contributions include dynamic erasure

labels and enforcing erasure policies fully statically (i.e., without a

run-time monitor).

3.1 Erasure Labels

In SpecVerilog, erasure labels take the following form:

b1 c( ®x )↗b2

Here,b1 andb2 are (potentially dynamic) security labels, and c(®x)
is an erasure condition: a function from a set of program variables

to a boolean. Erasure labels guarantee that label b1 is enforced,

until the current system state implies the erasure condition is true.
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Figure 1: Visualization of Temporal Ordering. The green box

highlights all i for which commit(i) is true. Annotated arrows

represent misspeculation, and an arrow from in to im indi-

cates that im directly follows in in program order.

After that point, b2, the stricter label, is enforced. This mandatory

enforcement of a stricter label is called erasure. As in prior work,

erasure is end-to-end, meaning that the erasure of some data implies

the erasure of all data derived from it as well. End-to-end erasure

is specified formally in Section 5.

Let us consider an example of erasure in SpecVerilog. For brevity,

from here on we use ⊥ to represent the least restrictive label (e.g.,

COMMIT) and ⊤ to represent the most restrictive (e.g., MISS).

1 input doErase { ⊥ } ;
2 reg data { ⊥ doErase↗⊤ } ;
3 reg top { ⊤ } ;
4 always@(posedge clk) begin
5 data <= data; //FAILS! doErase may be true
6 top <= data; //OK! top has high label
7 end

Since SpecVerilog does not rely on a run-time erasure mechanism,

it must verify that whenever an erasure condition might be fulfilled,

the relevant data is erased and only written to more restrictive

locations. In the above snippet, line 6 is safe because the destination

register has a higher label than the upper bound of data’s erasure

label. However, line 5 is unsafe because it is possible that, on any

given cycle, doErase is true and thus data must be erased.

To satisfy the erasure policy and SpecVerilog’s type checker, we

can change line 5 as follows:

data <= (doErase) ? 0 : data;

Effectively, SpecVerilog requires the designer to insert run-time

checks which enforce the desired erasure policy.

3.2 Ensuring Secure Speculation

Erasure labels are a generic, design-agnostic tool for tracking infor-

mation flow, but they can be used to prove that hardware designs

satisfy speculative security guarantees like Transient Noninterfer-

ence. Depending on how we apply erasure labels to a processor

design, we can achieve different levels of precision or enforce dif-

ferent speculative security conditions.

We illustrate one possible approach that provides comprehensive

security with a reasonable level of precision. We show how to de-

fend Temporal Ordering, an approximation of Transient Noninter-

ference introduced by Ainsworth [1]. Ainsworth defines Temporal

Ordering as a relation between instructions x and y:

x
T
=⇒ y ⇐⇒ commit(x) ∨ seq(x ,y)

The predicate commit(x) is true when instruction x has either al-

ready completed or is guaranteed to complete. The predicate seq(x ,y)
is true if x comes before y in (a potentially speculative) program

order. Figure 1 visualizes a formal definition of these predicates.

i
[s0...sm]
n is the nth instruction to execute in the program order

produced by the sequence of incorrect speculative predictions s0
through sm. Therefore, only instructions with an empty misspecu-

lation history represent the ISA-defined program order; these are

exactly the instructions for which commit(i
[s0...sm]
n ) is true.

The seq relation (i.e., speculative program order) is equivalent

to the arrows in Figure 1. Instruction in is only directly connected

to im by an arrow if im is the next instruction in program order or

is predicted to be the next instruction by a misspeculation sn. The
transitive closure of these arrows is the relation seq. In this way,

two instructions are only part of the same speculative program

order if the misspeculation history of the earlier instruction is a

prefix of the later instruction’s.

If all value and timing influences between instructions respect

Temporal Ordering, the processor also exhibits Transient Noninter-

ference. We formalize this property in Section 5.

To enforce Temporal Ordering with SpecVerilog labels, we only

need two underlying lattice elements to represent the security of

data:⊥ (the least restrictive element) for committed instructions and

⊤ (the most restrictive element) for misspeculated instructions. If

we could precisely know, at all times, whether or not an instruction

would misspeculate in the future, these simple labels would be

sufficient to ensure that misspeculated instructions never influence

the time at which other instructions commit. The value of erasure

labels is that they track the influence of instructions even without

knowing a priori whether they will misspeculate.

3.3 Incorporating Erasure

At a high level, we enforce Temporal Ordering by associating an

index x with each instruction which corresponds to its place in

the speculative program order. For this design, we assume that

the only source of speculation is predicting which instruction to

execute next. Later, we discuss how to generalize to other forms of

speculation.

We define an erasure label SL(x) for state associated with instruc-
tion x , using an erasure condition we call INV(x) (for “invalid”):

INV(x) ≡ isMiss && missId < x

SL(x) ≡ ⊥ INV(x )↗⊤

We assume that isMiss and missId are control signals in the pro-

cessor; on any cycle when isMiss is non-zero, it indicates that the

instruction after missId was the result of misspeculation (i.e., in-

struction missId made an incorrect prediction).

To illustrate how the SL label can be used to track speculation,

consider the following update logic for the program counter (pc)

register, which stores the address of the next instruction to execute.

1 reg pc, pctag, spec_npc { SL(pctag) } ;
2 wire isMiss, missId, realnpc { SL(missId) } ;
3 always@(posedge clk) begin
4 pc <= (isMiss && missId < pctag) ?
5 realnpc : spec_npc;
6 pctag <= (isMiss && missId < pctag) ?
7 missId : pctag + 1;
8 end
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As the pc changes, we need to keep track of how speculative it is;

an obvious way is to also store a tag that increments as it changes.

This example has a few interesting components. First, in line 1, we

use the SL label for both the program counter and its tag. We cannot

use ⊥ for the tag label since the tag itself (i.e., how speculative the

next instruction is) is influenced by speculation. Next, in line 2,

we introduce the control signals for misspeculation and the “cor-

rect” pc value realnpc that is meant to fix the misspeculation. All

these signals, including missId itself, are labeled with SL(missId),

since intuitively, they must be coming from some instruction before

the misspeculated instruction in program order. Lastly, the lines

to update pc and pctag include cleanup logic for misspeculation;

whenever misspeculation is detected, SpecVerilog requires that pc

and pctag are overwritten with less-speculative information.

In the above example, the pctag is incremented with each new

(speculative) instruction. In this way, the INV erasure condition is

consistent with the seq relation from Temporal Ordering:

seq(x ,y) ⇐⇒ INV(x) =⇒ INV(y)

Next, we generalize the INV erasure condition to properly track

instruction order in modern processor designs.

3.4 Leveraging the Reorder Buffer

Speculative, out-of-order (OoO) processors typically maintain a re-

order buffer (ROB), which provides the source of truth for program

order. The ROB is a first-in-first-out (FIFO) data structure that stores

all of the metadata associated with each instruction; entries are

inserted in speculative program order and are only removed when

they are committed: that is, they have updated architectural pro-

cessor state. If an entry is found to be the result of misspeculation,

that entry must be invalidated before it would be committed.

Since ROB order is a proxy for instruction order, we can define

a new erasure condition using the ROB ordering:

INV(x ,h) ≡ isMiss && (missId − h)% sz < (x − h)% sz

The design-time constant, sz, describes the size of the ROB, isMiss

and missId are the same control signals as before, x is the index of a

given ROB entry, and h is the index of the oldest ROB entry. In this

way, the ROB can be the source of truth for all of the labels in the

processor and is the only component whose labeling we need to

trust. For the code examples in this paper, we use the integer erasure

conditions that can be compared with < to simplify presentation.

Our implementations use the (more realistic) ROB labels.

3.5 Implementing Secure Modules

Hardwaremodulesmay handle both speculative and non-speculative

state. Securely managing state from multiple security levels is chal-

lenging and error-prone; we show how IFC brings some of the

potential pitfalls to light, and how to label secure implementations

such that they type-check. For this section we use secure caches as

our motivating example, but these methods apply to any hardware

module that manages state influenced by multiple instructions.

The labels described so far require overwriting the contents of

registers that might contain speculative data, a potentially costly

implementations for large hardware structures. Instead, real imple-

mentations of secure caches [1, 2, 48] use valid bits to mark data

as “erased”, or even just delay potentially unsafe operations until

speculation has been resolved [38]. These optimizations can also

be verified as secure in SpecVerilog by using dynamic labels in

conjunction with erasure conditions.

Efficient Invalidation. Valid bits can easily be incorporated as

dynamic labels to efficiently mark data as unusable. We can modify

our erasure labels from the previous example to support this feature:

VALID(b) ≡ if (b) ⊥ else ⊤

SLVAL(b,v) ≡ VALID(b) INV(v)↗⊤

The VALID label allows data to flow freely whenever the valid bit,

b, is set to 1, else it applies ⊤, meaning the data cannot influence

anything. In this way, any data with the SLVAL label can be “erased”

upon misspeculation by unsetting its associated valid bit.

1 wire isMiss, missId { SL(missId) } ;
2 reg sId, sValid { SLVAL(sValid, sId) } ;
3 reg sData { SLVAL(sValid, sId) } ;
4 always@(posedge clk) begin
5 sData <= sData; //OK! erased by marking as invalid
6 sValid <= isMiss && missId < sId ? 0 : sValid;
7 end

SpecVerilog correctly accepts the above implementation since the

SLVAL label uses VALID as its lower bound; in any cycle where

sData must be erased, its valid bit will be set to 0 and so in the next

cycle it will be treated as ⊤ (i.e., above the required erasure level).

If we had removed line 6, then this snippet would not be accepted

by SpecVerilog, since there would be no guarantee that sData is

invalidated upon misspeculation. Without the use of dynamic labels

in conjunction with erasure labels, we would not be able to verify

this optimization.

Secure Dynamic Scheduling. Secure designs also need to appropri-

ately order or delay operations when they might affect the timing of

less speculative ones. Processors that do not correctly schedule op-

erations are potentially vulnerable to SpectreRewind [20] or other

speculative interference [5] attacks. To accept implementations

that correctly schedule speculative operations, while still rejecting

unsound designs, SpecVerilog needs to reason precisely about label

comparisons. In this context, label comparisons are dynamic checks

that determine which of two pieces of data is more speculative.

Consider a latency-insensitive interface that uses ready and valid

bits for making requests to a module. Whenever the following

implementation of such amodule is not currently handling a request

it sets ready to true and will accept valid incoming requests:

1 //input and output must have the same label , defined by client
2 input reqId, reqValid, req { SLVAL(reqValid, reqId) } ;
3 output reqReady { SLVAL(reqValid, reqId) } ;
4 reg curId, curValid, cur { SLVAL(curValid, curId) } ;
5 always@(posedge clk) begin
6 if (reqValid && !curValid) begin
7 //FAIL! if 0, curValid cannot influence anything
8 curValid <= 1; curId <= reqId; cur <= req;
9 end
10 //FAIL! req might not be allowed to observe cur
11 reqReady = ∼curValid;
12 end

This logic is, in general, insecure. When the current request is more

speculative than the incoming one, the incoming request is delayed,

leading to a violation of Transient Noninterference. SpecVerilog cor-

rectly rejects this design since it cannot prove that SLVAL(curValid,

curId) may influence SLVAL(reqValid, reqId).
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In this scenario, secure designs must allow less speculative re-

quests to preempt others, but must prevent the opposite; this prac-

tice is called leapfrogging in prior work [1]. SpecVerilog has a per-

missive label comparison operator that enables implementations of

leapfrogging without violating SpecVerilog’s security guarantees.

Here we demonstrate how to compute the ready bit in a secure

SpecVerilog implementation:

1 if (L(curValid) ⊑ L(reqReady))
2 //!reqValid || (curValid && curId <= reqId)
3 reqReady = ∼curValid;
4 else
5 reqReady = 1;

Line 1 demonstrates a label comparison in SpecVerilog, which

dynamically computes the labels of curValid and reqReady and

evaluates to 1 only if the comparison holds. The comment describes

the actual logic that computes the label comparison. We discuss

this operator and its limitations further in Section 4.3. This version

safely implements preemption and, with the interface labels from

the first example, is accepted by SpecVerilog. Most IFC-based type

systems would reject this program because the label comparison

can cause an implicit flow. SpecVerilog introduces a novel and

more permissive rule that accepts the above code but does not

compromise security.

Variable x
Level l ∈ L
Function f ∈ Zn → L
Condition c ∈ Zn → B
Basic Types b ::= l | f (®x)
Label τ ::= b | b1 c( ®x )↗b2 | τ1 ⊔ τ2 | τ1 ⊓ τ2
Typing Context Γ ∈ x → τ

Figure 2: Syntax of security labels. Label functions and poli-

cies are specified with variables. Policy conditions may also

contain free variables.

4 SPECVERILOG DESIGN

This section briefly presents SpecVerilog’s type system, formal

security guarantees, and implementation.

4.1 Typing Rules

SpecVerilog extends SecVerilog’s existing type system with rules

for erasure labels and permissive label comparisons. Our syntactic

presentation here differs slightly from prior work [17, 59] but is

effectively the same, other than SpecVerilog’s novel contributions.

Figure 2 presents the syntax for security labels in SpecVerilog.

Other than erasure labels and conditions, this syntax is directly

borrowed from SecVerilog. It allows users to define their own un-

derlying security labels, and to define dynamic labels as dependent

types (i.e., functions of program state). Erasure labels are formed

from two non-erasure labels and an erasure condition
1
. Erasure

1
Erasure labels cannot be nested, but this does not limit expressiveness. Taking the

least upper bound (⊔) of multiple erasure labels can achieve the same effect as placing

erasure conditions inside of lower or upper bounds.

conditions are functions of run-time state that return true or false;

when true, the data labeled with this condition must be erased.

Since SpecVerilog is dependently typed, we also refer to the

current system state in some of our rules and definitions. In this

presentation we keep the state mostly abstract; this table describes

our syntax:

Syntax Operation

σ Current system state

σ [x] Value of variable x
σ [®x] Value of list of variables ®x

σ → σ ′
Clock-tick transition to next state

Well-formedness. We assume several well-formedness conditions

about a program’s types, which are defined in Figure 3. First, de-

pendent labels must only depend upon variables whose labels are

less restrictive; this prevents unwanted information flow channels

through label checking. Second, we require that all variables ap-

pearing in dependent types are either the same as the variable of

the type (i.e., a recursive label) or they must be sequential variables

(i.e., variables whose values only change on a clock edge). This

restriction ensures that any time a dynamic label changes its value,

the change is checked for safety by the typing rules. Lastly, we

assume that all erasure policies actually represent upgrades; after

erasure, the policy must be at least as restrictive as before erasure.

(1) ∀v ∈ Vars.∀v ′ ∈ FV(Γ(v)).∀σ .obs(Γ(v ′)) σ⊑ obs(Γ(v))
(2) ∀v ∈ Vars.∀v ′ ∈ FV(Γ(v)).v ′ , v =⇒ v ′ ∈ seq

(3) ∀τ1 c( ®x )↗τ2.∀σ .τ1 σ⊑ τ2

Figure 3: The well-formedness conditions for SpecVerilog

type environments. Vars is the set of all variables in the pro-

gram; FV(τ ) is the set of variables referenced in the type τ ;
obs(τ ) is data visibility and is defined in Figure 8.

4.2 Type Checking

SpecVerilog’s type checking rules primarily rely on a may-flow-to

relation, ⊑ , which describes allowed influences between security

types. As is typical for IFC, this relation is reflexive and transitive

and relies on the underlying security lattice ordering. The complete

definition of ⊑ can be found in Figure 10 in the appendix.

In Figure 4, we present the most interesting rules for SpecVerilog:

those concerning erasure labels. The Erase-Intro rule allows us to

add an erasure condition onto an existing policy and the Erase-Elim

rule allows us to replace an erasure label with a more restrictive

label. The Erase-Weaken rule describes how to replace one erasure

label with another. Influence is allowed if the lower and upper

bounds both may flow, and if the new erasure condition would

evaluate to true any time the original condition would evaluate to

true, regardless of the system state.

As in SecVerilog, we use two different typing rules based on

whether the destination is updated combinationally, or sequentially.

Figure 6 describes how we resolve variables based on the kind of

assignment. For combinational assignments (i.e., blocking), all de-

pendent types are resolved in the current context. For sequential
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τ ⊑ τ ′

Erase-Elim

τ2 ⊑ τ ′

τ1
c( ®v)↗τ2 ⊑ τ ′

Erase-Intro

τ ⊑ τ1

τ ⊑ τ1
c( ®v)↗τ2

Erase-Weaken

τ1 ⊑ τ ′
1

τ2 ⊑ τ ′
2

∀σ .σ ⊨ c(®v) =⇒ σ ⊨ c ′(®v ′)

τ1
c( ®v)↗τ2 ⊑ τ ′

1

c ′( ®v ′)↗τ ′
2

Figure 4: The environment-independent may-flow-to rela-

tion for erasure labels.

τ ↓σ τ ′

Labels

l ↓σ l
Functions

®v = σ [®x] l = f (®v)

f (®x) ↓σ l

Erase

τ1 ↓σ τ ′
1

τ2 ↓σ τ ′
2

®v = σ [®x]

τ1
c( ®x )↗τ2 ↓σ τ ′

1

c( ®v)↗τ ′
2

Figure 5: The function that resolves variables in labels.

ComMFT

τ ↓σ τ ′ τ1 ↓σ τ ′
1

τ ′ σ⊑ τ ′
1

τ σ⊑ τ1

SeqMFT

¬Erase(σ ,τ ,τ1)
σ → σ ′ τ ↓σ τ ′ τ1 ↓σ ′ τ ′

1
τ ′ ⊑ τ ′

1

τ σ⊑next τ1

Figure 6: May-flow-to relations parameterized on a given

system state. Rules ComMFT and SeqMFT type-check com-

binational and sequential assignments, respectively.

ComAssign

Γ ⊢ e ⊣ τ
Γ(x) = τ ′ x < FV(τ ′) C =⇒ pc ⊔ τ σ⊑ τ ′

C, Γ,pc ⊢ x = e

SeqAssign

Γ ⊢ e ⊣ τ Γ(x) = τ ′

x < FV(τ ′) C =⇒ pc ⊔ τ σ⊑next τ
′

C, Γ,pc ⊢ x <= e

LabelComp

Γ(v1) = τ1
Γ(v2) = τ2 ∀σ .τ1 σ⊑ τ2 ∨ τ2 σ⊑ τ1 τ = τ1 ⊓ τ2

Γ ⊢ v1 ⊑ v2 ⊣ τ

Figure 7: Type checking rules for selected statements and ex-

pressions in SpecVerilog. C is a set of constraints about the

current (σ ) and next (σ ′
) states. pc tracks the label of vari-

ables read in the current context.

assignments (i.e., non-blocking), the label of the destination is eval-

uated in the next-cycle context instead. Additionally, for sequential

assignments, we require that the source does not need to be explic-

itly erased with the Erase side condition. This condition returns

true when the Erase-Weaken rule must be applied to prove that

the flow is allowed and the left hand erasure condition in that rule

is true this cycle . Figure 7 demonstrates the actual typing rules for

assignment statements in SecVerilog, which reference the variable

resolution rules in Figure 6. We omit the rules for when labels are

recursive for both combinational and sequential assignments for

brevity; they are nearly identical to those from SecVerilog.

4.3 Erasure Label Design

The evaluation of erasure conditions in Figures 4 and 5 has a

peculiar-looking definition, so here we justify its design. Unlike nor-

mal dynamic labels, erasure conditions are allowed to contain free

variables. Consider our misspeculation example from Section 3.3:

INV(x) ≡ isMiss && missId < x

INV has two free variables, isMiss and missId. When applying

the Erase-Weaken rule to check if INV(x) implies some other

condition, the implication must hold for any possible values of

isMiss and missId, but only for a concrete value of x .
This design is necessary to make erasure labels usable while still

ensuring erasure conditions are checked in the future. Obviously,

if we resolve all of the variables to values before checking, then the

implication will hold on any cycle where INV is true, which would

(inappropriately) allow us to stop monitoring erasure conditions.

On the other hand, leaving all variables free would prevent typing

clearly safe programs. Effectively, we would be unable to leverage

knowledge of current and future system state to weaken the label.

The following snippet demonstrates a safe programwhich would

not type-check under the more restrictive treatment of erasure

weakening. In this example, we check an erasure condition and

then conditionally copy speculative data into a register.

1 input rId, rData { SL(rId) } ;
2 reg sId, sData { SL(sId) } ;
3 always@(posedge clk) begin
4 // assume erase properly checks the erasure condition for rId
5 if (!erase) begin
6 sData <= rData; sId <= rId;
7 end
8 end

If we did not resolve variables in the Erase-Weaken rule, we would

need to prove the following to type-check the above code:

∀ isMiss, missId, sId, rId.

(isMiss ∧ missId < sId) =⇒ (isMiss ∧ missId < rId)

Unfortunately, the above statement does not hold; we cannot actu-

ally prove the assignment is safe without relating the current value

of sId to the new value of rId after the assignment.

With the Erase-Weaken rule from Figure 4 and resolving vari-

ables according to the correct cycle values as in Figure 6, we can

correctly type-check the prior example. We need to prove:

∀ isMiss, missId. (isMiss ∧ missId < sId) =⇒

(isMiss ∧ missId < next(rId))
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obs(τ ) = τ ′ obs(τ1 ⊓ τ2) = obs(τ1) ⊓ obs(τ2)

obs(τ1 ⊔ τ2) = obs(τ1) ⊔ obs(τ2)

obs(b1 c( ®x )↗b2) = obs(b1)

obs(b) = b

Figure 8: The obs function defines the visibility of data with

a given label. Erasure labels use their lower bound.

This implication can be proved by statically analyzing the program;

in the context of the assignment we can prove sId = next(rId).

which is sufficient to prove the overall implication.

Dynamic Label Checks. In SecVerilog (and other IFC type sys-

tems with dynamic labels), run-time label comparisons use the same

rule as any binary operation: the label of the result is the join (⊔)

of the labels of the operands. Since labels are run-time values, they

are computed from some information and can also leak informa-

tion; this rule prevents those leaks from violating security policies.

Unfortunately, this rule is too restrictive for efficient processor de-

signs; specifically, it makes it impossible to type-check dynamically

scheduled modules such as caches. Caches handle a limited number

of concurrent requests and must decide which to delay when they

are overburdened. In practice, this involves comparing the prove-

nance (i.e., labels) of requests; the typical label check rule renders

the result of this decision too restrictive to be useful.

However, in the special case where the labels are guaranteed

to be ordered then there is a safe implementation (namely the pre-

emption described in Section 3.5). In this case, we introduce a more

permissive typing rule in Figure 7: the LabelComp rule, which effec-

tively uses the lower label as the label of the result of the comparison

and allows SpecVerilog to type-check the safe implementation. This

is an unintuitive result which relies on the fact that an attacker can

be statically sure that one of labelsmust be able to flow to the other.

Appendix B contains a proof of the safety of this typing rule.

5 SECURITY GUARANTEES

In this section, we formalize SpecVerilog’s security guarantees.

First, we describe noninterference and end-to-end erasure, condi-

tions that hold for all well-typed SpecVerilog programs. Then, we

define Transient Noninterference with respect to an abstract pro-

cessor model. Finally, we show how to use erasure labels on a real

processor design to statically guarantee that it satisfies Transient

Noninterference.

5.1 Noninterference and Erasure

SpecVerilog provides traditional IFC-style security guarantees.

Observational Equivalence. Observers, including attackers, are

characterized by their ability to distinguish different executions.

An observer is defined by a security level l . It can observe the value

of any variable which may influence data with level l . Additionally,
since the labels of variables may change during execution, the set

of variables that may influence l is visible to the observer as well.
Figure 8 defines the observation function that translates labels in a

given environment into the corresponding observable lattice level.

The interesting part of this function is for erasure labels, which

defines the lower bound of the erasure label to be the observable

level. Data marked by an erasure label is considered visible at the

lower bound until it must be erased.

Given this observation function, we define observational equiv-

alence. When two program states are observationally equivalent

with respect to some level, l , any attacker that can observe up to l
cannot distinguish the two states by direct observation.

Definition 1 (Observational Eqivalence). Two states are

observationally equivalent w.r.t level l (σ1 ≈l σ2) when:

∀x ∈ VARS. o = obs(Γ(x)) ∧ o σ1⊑ l ⇐⇒ o σ2⊑ l ∧

o σ1⊑ l =⇒ σ1[x] = σ2[x]

Well-typed SpecVerilog programs exhibit noninterference. Sim-

ply put, noninterference ensures that, if an attacker cannot distin-

guish two states, then the attacker will not be able to distinguish

the result of executing those states.

Definition 2 (Noninterference). A program is noninterfering

if for an attacker defined by an observation level l, observational

equivalence is preserved during execution:

∀l ∈ L, i ∈ {1, 2}.σi → σ ′
i ∧ σ1 ≈l σ2 =⇒ σ ′

1
≈l σ

′
2

These definitions of observational equivalence and noninterfer-

ence are standard for IFC systems with dynamic labels and mirror

those of SecVerilog.

End-To-End Erasure. All well-typed SpecVerilog programs also

enforce end-to-end erasure. Intuitively, erasure ensures that, once

an erasure policy’s condition is fulfilled, the labeled data must only

have influenced state that can be observed at or above the upper

label. Our definition of erasure is inspired by Hunt and Sands [24],

but we modify it to account for our definition of observability, and

also to incorporate dynamic labels and semantic erasure conditions.

While the following specification of end-to-end erasure is dense,

it can be summarized concisely. If, at any point, some variable will

eventually need to be erased, then replacing that variable with an

uninterpreted value and continuing execution results in a post-

erasure state that is indistinguishable (for a low observer) from an

execution that uses the original value.

Definition 3 (End-To-End Erasure). Given an infinite trace of

system states: σ0 → σ1...→ σn ..., if for all variables x , the erasure
policy of x in state σi is ever satisfied in some future state, σj , then
replacing x in σi with an uninterpreted value (⊥) results in a future

state that is l-equivalent to σj+1 for any l that the upper bound on

x ’s erasure policy cannot observe.

∀i, j,x ,c(®y),b, l . i ≤ j ∧ (c(®y),b) ∈ eraseTo(Γ(x)) ∧

®v = σi [®y] ∧ σj ⊨ c(®v) ∧ σ ′
i = σi [x 7→ ⊥] ∧

σ ′
i →

j−i+1 σ ′
j+1 ∧ b σi @ l

=⇒ σ ′
j+1 ≈l σj+1

This definition relies on the eraseTo function, which returns a

set of pairs of erasure conditions and levels. When the condition

evaluates to true, the variable must be erased to the given level.

For simple erasure labels, eraseTo is specified in the obvious way,

returning the erasure condition and the upper bound label. Defini-

tion 7 in the appendix describes the complete eraseTo function.



SpecVerilog: Adapting Information Flow Control for Secure Speculation CCS ’23, November 26–30, 2023, Copenhagen, Denmark

5.2 Speculative Security

Here we formalize a strong and usable definition of speculative

security and sketch how SpecVerilog can enforce this condition by

applying Temporal Ordering-based labels.

Attacker Model. Most prior models of speculative security [21,

22, 54] are made with respect to an attacker that can make direct

observations of microarchitectural state or actions (such as caches,

branch predictors, or speculatively loaded addresses). However,

thesemodels can both lead to unsoundness by overlooking potential

attacks or, conversely, overestimate the attacker’s power by leaking

state that may not actually influence timing.

Instead, we model software-level timing side channel attackers

more realistically: attackers can observe the time at which each

instruction completes but they may not observe intermediate mi-

croarchitectural states. Our model faithfully reflects an attacker that

can execute code on the processor and make deductions from the

timing of its execution, but does not reflect the power of attackers

with physical access to the hardware (who might exploit other side

channels such as power or EM radiation).

Transient Noninterference. Asmentioned in Section 2.4, Transient

Noninterference effectively enforces a security condition defined

by prior work, transient non-observability. However, in order to

formally show that Transient Noninterference is safe with respect

to our strong attacker model, we use a definition more similar

to Unique Program Execution (UPE) [16], a baseline confidential-

ity condition for processors. UPE says that if secret architectural

state
2
(register or memory contents) can be leaked to an attacker

via timing channels, then that state must also affect the values of

attacker-visible architectural state.

So far, we have argued that erasure labels can be used to enforce

Temporal Ordering. However, Temporal Ordering is not sufficient to

enforce UPE (and Transient Noninterference) on its own. Processors

may pathologically leak information about arbitrary architectural

state via timing channels even without speculative execution. For

instance, a processor satisfying Temporal Ordering could use an

arbitrary value in memory to prefetch cache lines, or to otherwise

delay instruction commit; implementations exhibiting these behav-

iors would violate UPE. While these sorts of leaks do represent

potential bugs, they are of the kind that architects and functional

verification tools are likely to find and eliminate.

Therefore, we prove a slightly weaker theorem by restricting our

guarantee to processors that only read architectural state associated

with some transiently executed instruction
3
. We formalize this

assumption by defining an abstract OoO processor semantics, which

Figure 9 in the appendix depicts. This model is more general than

those used by prior work (e.g., [8, 22]) so that our guarantees rely

on few microarchitecural assumptions or attack vectors.

The processor consists of the following components:

2
Here, “secret” is defined with respect to an arbitrary architecture–level security

policy, so architectural state may be split arbitrarily into secret and public data.

3
Note that most defenses to transient execution attacks provide similar guaran-

tees, as it is generally assumed processors do not exhibit these kinds of pathological

vulnerabilities.

Syntax Description

rob Reorder buffer for in-flight instruction metadata

A Architectural state (registers, memory, and pc)

µ Microarchitectural state

The processor can: speculatively fetch instructions, placing them

into the rob; execute instructions, updating µ based on the ISA–

defined semantics that instruction; commit instructions, removing

them from the rob and updating A; and rollback state upon discov-

ering mispredictions. The processor has an abstract scheduler that

determines which operations to run each cycle and is a function

of µ and any architectural state read by instructions in the rob. We

assume that the scheduler respects registered hardware semantics

(i.e., persistent state can only be written once per clock cycle).

The J·K notation is used to extract the (infinite) trace of architec-

tural states (Ai ) from executing a given initial processor configura-

tion (P):

JPK = A0A1 ...An ...

This trace contains the entire architectural state on every clock

cycle during the processor’s execution.

We also define observation functions to express both architec-

tural and timing-sensitive attackers.

Definition 4 (Low Architectural Observer). A low archi-

tectural observer (Ol ) is defined with respect to an arbitrary subset

of the architectural state (Al ⊆ A). This observer can view the time-

independent sequence of low architectural states.

Ol (A0A1 ...) = if (Al0 = Al1) then Ol (A1 ...) else Al0Ol (A1 ...)

Definition 5 (Timing-Sensitive Observer). A timing-sensitive

low observer (Tl ) can observe the Al on every clock cycle.

Tl (A0A1 ...) = Al0Al1 ...

Lastly, we formally define Transient Noninterference, which

can be enforced via Temporal Ordering and SpecVerilog-checked

erasure labels.

Definition 6 (Transient Noninterference). Processor P ex-

hibits Transient Noninterference if, for any partitioning of A, all
executions indistinguishable to a low-architectural observer are also

indistinguishable to a timing-sensitive observer.

∀i ∈ 1, 2. Pi = ⟨robi ,Ai , µi ⟩,

Ai = ⟨Al i ,Ahi ⟩, Al1 = Al2, µ1 = µ2, robi = pci

Ol (JP1K) = Ol (JP2K) =⇒ Tl (JP1K) = Tl (JP2K)

5.3 Enforcing Transient Noninterference

In this section, we briefly justify both why a processor that satisfies

Temporal Ordering must also satisfy Transient Noninterference,

and also how properly applied erasure labels enforce Temporal

Ordering using the processor semantics from Figure 9. Note that

this model assumes that the only source of speculation is next-

instruction prediction; this assumption is simplifying for presenta-

tion but not necessary. We discuss how to extend these results to

more general speculation and other processor models in Section 9.
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Temporal Ordering enforces Transient Noninterference. The timing

behavior of any processor that refines the semantics in Figure 9

is only a function of three things: data read by instructions that

commit; data read by those that only transiently execute; and the

initial microarchitectural state.

Temporal Ordering restricts influence so that different paths of

speculative execution cannot influence each other; therefore, vary-

ing transiently read data has no impact on timing. Furthermore, by

assumption, execution results in the same set of low-architectural

observations. Since timing is therefore only a function of low-

architectural state, time-sensitive observations of low-architectural

state are also independent of architectural secrets.

Erasure labels enforce Temporal Ordering. We use the ROB labels

described in Section 3.4 to label our abstract processor. The ROB

always contains a reference to the oldest instruction that is currently

executing, which is guaranteed to eventually commit. We call the

index of this instruction in the ROB the head . We label each entry

in the ROB recursively based on its index, i , with the label: SL(i ,
head). All committed state has the same label ashead ; effectively we
stop precisely tracking which instruction influenced architectural

state once that instruction is guaranteed to commit. The rest of the

processor is labeled such that it type-checks in SpecVerilog (and

thus satisfies noninterference and end-to-end erasure).

Here, we argue that noninterference and end-to-end erasure

when using these labels on an abstract OoO processor guarantees

Temporal Ordering. All state in the processor is a function of the

architectural state accessed by some set of instructions, therefore

so is the time at which each instruction commits. We write I(x)
to denote the set of instructions that have influenced register x at

some point in the execution. We use the notation from Figure 1 to

denote instructions across speculative program orders. i
[s1, ...sn ]
j de-

notes instruction j that was the result of the (incorrect) speculative
predictions s1 through sn .

Theorem 1 (Enforcing Temporal Ordering). For any two

registers in a well-typed P, x and y, if x may influence y according to

SpecVerilog, then that influence obeys Temporal Ordering.

∀x .y.i[s1, ...,sn ]j ∈ I(x),i
[p1, ...,pn ]
k ∈ I(y),σ .

Γ(x) σ⊑ Γ(y) =⇒ i
[s1, ...,sn ]
j

T
=⇒ i

[p1, ...,pn ]
k

The proof is relatively straightforward and relies on one main

lemma; any given register is only influenced by instructions on a

single speculative program order.

Lemma 1. For any register, x , in a well-typed P,

∀i[s1, ...,sn ]j , i
[p1, ...,pn ]
k ∈ I(x),

j ≤ k =⇒ [s1, ...sn ] ⪯ [p1, ...,pn ]

where ⪯ is prefix order.

Intuitively, Lemma 1 means that, following a misspeculation

event, there are no remnants of the misspeculated instructions; the

processor is always executing down only one speculative road at

a time. Lemma 1 follows from end-to-end erasure, and induction

on the OoO processor semantics. We include a proof sketch in

Appendix B. Here we sketch the proof for Theorem 1.

Proof Sketch. In any given state, if Γ(x) σ⊑ Γ(y), then x is or-

dered before y in some speculative program order (by the processor

semantics and ROB labels). By Lemma 1, I(x) and I(y) must each

only contain instructions from a single speculation path; it must in

fact be the same speculation path since they are ordered. Therefore,

we have I(x) ⊆ I(y), which directly implies Theorem 1. □

6 IMPLEMENTATION

SpecVerilog extends the existing SecVerilog type checker by adding

erasure labels
4
. To support dependent types, SecVerilog relies on the

Z3 SMT solver [13] for type checking. Dynamic labels are specified

by the user as Z3 functions, which are referenced by the constraints

that the SecVerilog type checker generates.

In SpecVerilog, users also supply erasure conditions as Z3 func-

tions. We support new syntax for erasure labels directly in Verilog

source code that can reference these erasure conditions. SpecVerilog

generates constraints based on the may-flow-to relation and typing

rules described in Figures 4 and 7 and discharges these constraints

to the Z3 SMT solver to correctly type-check designs.

We made several other modifications and improvements to the

SecVerilog compiler to incorporate features from other research

efforts on IFC type systems for hardware [17, 18, 59]. The modifi-

cations improved the efficiency of the compiler (i.e., simplified the

generated Z3 constraints), enabled us to precisely type-check our

most complicated examples, and fixed some bugs in the publicly

available SecVerilog implementation.

Permissive Label Comparisons. The permissive LabelComp rule

is not implemented in the current SpecVerilog prototype. The dif-

ficulty in implementing this rule is that it requires automatically

generating Verilog code from label definitions that correctly define

the may-flow-to relation, as opposed to generating Z3 constraints

from Verilog code. It is certainly viable to implement such a trans-

lation for a limited yet sufficiently expressive subset of Verilog

expressions, but we leave it as future work. In our example pro-

cessor implementations, we manually translate label comparison

operations into Verilog expressions and use a declassify statement

to explicitly label the result according to the LabelComp rule.

7 CASE STUDIES

In addition to our theoretical results, we used our implementation

to empirically evaluate the utility of SpecVerilog through case stud-

ies. Table 1 provides a high-level summary of our case studies, the

rewrite effort required to satisfy the type checker, and the mitiga-

tion techniques demonstrated by the example. Each of our case

studies targets a component that is critical to the design of specula-

tive, OoO processors. Some are known to contribute to transient

execution vulnerabilities, while others were chosen to illustrate

that SpecVerilog can still accept complex, yet safe, designs. For each

of these case studies, we used the ROB-based labels described in

Section 3.4 to label inputs and outputs associated with instructions.

4
The implementation is a fork of Icarus Verilog and can be found at https://github.

com/dz333/secverilog.

https://github.com/dz333/secverilog
https://github.com/dz333/secverilog
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Case Study

Annotation Burden (Lines) Register Solver Time Mitigation Strategy

SpecVerilog Features

Labeled Changed Original Overhead (sec) Delay Rollback Partition Used

Reorder Buffer 22 5 86 None 0.247 – ✓ – LC, IA, VL

Cache + GM 250 9 1527 None 1.43 ✓ ✓ ✓ LC, VL

Predictor 16 0 68 None 0.104 ✓ – – LC or IA

Predictor + GM 38 6 157 None 0.993 ✓ ✓ ✓ LC, VL

Renaming RF 117 26 366 1 label/replica 36.9 ✓ ✓ – LC, IA, VL

Table 1: A qualitative summary of secure hardware module case studies. Annotation burden is relative to a secure design in

plain Verilog. Labeled counts the lines that needed explicit labeling. Changed includes modifications and additions needed to

satisfy the type-checker. Original is the total lines of the original Verilog description. LC are label comparisons, IA are input

assertions, VL are labels that leverage valid bit or validity logic to erase contents.

7.1 Case Study Modules

Reorder Buffer. We implement a reorder buffer skeleton to illus-

trate that our source of truth for labels can be implemented securely

and with minimal assumptions about functional correctness. Our

ROB supports insertion, misspeculation and instruction commit-

ment; we leave the ROB entry format abstract for this example.

Discussion. In this module (and all of our case studies), in order

to type-check, we had to assert that the oldest entry in the ROB

would never be misspeculated; this follows directly from functional

correctness and is essentially a minimal assumption. To implement

erasure we used a dynamic label that only marked entries between

the head and tail of the ROB as valid; this enabled us to type-check

a normal ROB since re-setting the tail pointer upon misspeculation

effectively “erased” misspeculated entries.

Cache. We implemented a blocking, direct-mapped L1 cache

in SpecVerilog and labeled its interface so that all requests and

responses were associated with some instruction. Responding to

requests requires multiple cycles and so the cache maintains state

associated with the current request. We also built a GhostMinion-

like [1] module to store cache lines from speculative requests which

were promoted to the original cache on instruction commit.

Discussion. Even with such a simple design, SpecVerilog forced

us to implement essentially all of the mitigation mechanisms de-

scribed in the original GhostMinionwork: free-slotting, time-guarding,

and leapfrogging. We did not need to add extra state or dynamic

checks beyond those needed for the above mitigation techniques.

Branch Predictor. We built a standard 2-bit history predictor. To

ensure this design was safe we had to insert a dynamic check that

ignored speculative updates to its state. Alternatively, this check

can be established as an assumed precondition on valid requests.

In addition, we made a second version applying the GhostMinion

methodology to allow speculative updates to predictor state.

Discussion. Branch predictors can be the targets of speculative

fetch redirect vulnerabilities [32]; the usual method of defending

against such attacks is delaying updates to predictor state. Our

design represents this delay mitigation by forcing some dynamic

check, either in the predictor or in an instantiating module.

Renaming Register File. Renaming register files are not typically

vulnerable to transient execution vulnerabilities; however, they

do mix speculative and committed state and their safety relies on

invariants established by functional correctness. We modify an

existing implementation so that it type-checks in SpecVerilog.

Discussion. This was the only module where SpecVerilog forced

us to add unnecessary state and/or dynamic checks. We needed

to add explicit labels for name file replicas (that are used to reset

the architectural-to-physical name mappings upon misspeculation)

which would require only hundreds of bits for a realistically sized

implementation. Additionally, we had to change some of the logic

that updated the list of free names; the original logic was safe due to

invariants that could only be established with gate-level reasoning

(e.g., a tool like GLIFT [43]). Lastly, we encoded some invariants

about valid usage of the rename file as input assumptions to avoid

inserting extra unnecessary dynamic checks.

7.2 Experience Report

While developing these case studies, we learned several key take-

aways about designing secure hardware in SpecVerilog:

• SpecVerilog frequently forced us to fix potential vulnerabilities

that we had missed. These bugs included both forgetting to

invalidate misspeculated data or metadata and also incorrectly

handling interactions between different speculative requests.

• We did usually have to syntactically alter designs for them to

be accepted by SpecVerilog, although this often did not change

their functionality or require extra state.

• Some designs are only secure under certain assumptions. These

assumptions often follow from functional correctness, and could

be verified separately, either using formal verification or by estab-

lishing the necessary invariants via another hardware module.

At a high level, many vulnerabilities we encountered were subtle,

and it was not immediately obvious whether the preexisting code

was insecure or whether SpecVerilog was incorrectly rejecting

a design due to imprecision. Usually, there was a real security

problem, which we often discovered by rewriting the relevant logic

from a blank slate, guided by the SpecVerilog type checker; it was

much easier to build a secure design than fix an insecure one.

Annotation Burden. Most of the required design effort is from

explicitly defining and annotating labels. We wrote 21 lines of Z3

constraints to specify the definitions of dynamic labels and erasure
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conditions across all example combined; these label definitions rep-

resent a one-time effort and can be reused in other designs. Neither

SpecVerilog nor its predecessor, SecVerilog, have label inference,

and therefore all registers and wires in the design must have their

labels annotated by the programmer. While standard IFC inference

algorithms [36] could be used to ease some of this burden, erasure

labels and per-element labels [18] complicate this problem and

would require further investigation.

The other primary change made to assist type checking was to

translate some dynamic checks to use the “flows to” operator instead

of an equivalent logical formulation. Typically, these changes did

not alter functionality but allowed SpecVerilog to prove the safety

of the design.

Register and Logic Overhead. We almost never needed to add

extra registers to verify secure designs since the valid bits or in-

struction identifiers necessary to represent dynamic labels were

usually necessary anyway to implement a secure design. However,

in a few instances we did need to add redundant dynamic checks

that could add overhead to the final designs. This redundancy was

caused by imprecision in the static analysis used by SpecVerilog to

prove relationships between dynamic labels; improving the preci-

sion of this analysis could enable removing these redundant checks.

Compile-Time Overhead. SpecVerilog imposed little compile-time

overhead. All of our examples compile and type-check in less than

one minute and most complete in less than one second, despite

relying on an SMT solver. The vast majority of the compile time

was spent in the solver and Table 1 shows those times for each case

study. Even the most complex individual queries that relied on the

Z3 theory of arrays took no more than ten seconds. When a design

is insecure, Z3 provides a counterexample that violates the type

checking constraints.

8 RELATEDWORK

8.1 Architectural Mitigations

Since the discovery of Spectre and Meltdown, dozens of microar-

chitectural mitigation mechanisms have been proposed (e.g., [1, 2,

32, 37, 51, 53]). Xiong and Szefer [50] survey microarchitectural

mitigation techniques. While some designs come with formal secu-

rity conditions [32, 53], or even security proofs [54], none of these

designs (to our knowledge) are formally checked for correctness at

the RTL level. Most are implemented in the architecture simulator

gem5 [6], which does not accurately capture timing behavior and

does not describe synthesizable circuits.

SpecVerilog is an RTL-level language that can be used to imple-

ment and verify the security of many of these mitigation mecha-

nisms. Most of these mitigations rely on a combination of delaying

potentially leaky operations, rolling back speculative modifications,

partitioning state, and taint tracking. SpecVerilog’s information flow

type system with erasure labels can be used to validate defenses

using all of these techniques. However, some defenses leverage

randomness [26, 48, 49]; SpecVerilog would likely consider them

insecure since it cannot reason about probabilistic security.

Orthogonally, some security-centric architectures [19, 52, 57]

include annotations that enable software to specify fine-grained

protection of specific processor data. SpecVerilog could be used to

check the security of speculative implementations of such ISAs.

8.2 Secure Hardware Design Tools

In this work, we extend SecVerilog [17, 18, 59], one of a few infor-

mation flow type systems for secure RTL design [14, 19, 29, 30].

While some of the above allow dependent security labels, none of

them have been used to defend speculative security conditions. In

addition to type systems, there are a number of other static analysis

tools for secure hardware design.

GLIFT [23, 43] tracks information flow at the gate level and lever-

ages properties of boolean logic for high precision. RTLLIFT [4]

applies similar techniques but improves verification performance

by working at the RTL level. The high precision comes at the cost

of scalability; these tools are not designed for or appropriate for

verifying complex dynamic processor security properties, as Tran-

sient Noninterference is. Their taint-tracking approach might be

used in conjunction with an IFC type system to improve precision

when verifying low-level bit manipulations.

Clepsydra [3] and Xenon [44] are designed to check RTL designs

for timing side channels. Clepsydra verifies coarse-grained timing

security polices such as constant-time execution and timing isola-

tion. Xenon, an interactive tool for verifying constant-time execu-

tion, scales to more complex circuits, including in-order processors.

Neither tool has been applied to security of transient execution.

The only static analysis tool (to our knowledge) that can soundly

verify processor speculation security properties is that of Fadiheh

et al. [16], based on Unique Program Execution Checking. Unlike

SpecVerilog, their tool can require significant manual proof effort

from the user and also does not check these proofs for correctness,

creating a large surface area for bugs.

8.3 Information Flow Erasure Policies

Information flow erasure policies [10] were originally defined as

part of a type system for software. However, Chong and Myers

assume that a run-time monitor enforces erasure policies via dy-

namic clearing. Hunt and Sands [24] describe a type system that

statically enforces erasure, although when to erase data is defined

syntactically via scope rather than semantically. Stewart et al. [41]

use dependent types to support erasure within data structures.

Our erasure labels expand upon these systems; they incorporate

semantic erasure conditions that specifywhen data should no longer

be used, are statically enforceable, and leverage dependent types to

mix and reuse state across security levels.

8.4 Speculation-Secure Software

Other efforts focus on verifying the security of software given vari-

ous speculative hardware semantics [8, 9, 21, 22, 34, 47]. These all

adopt abstract processor semantics and leakage models. However,

unlike the semantics we utilize in Section 5.2, they often rely on spe-

cific assumptions about processor behavior and do not incorporate

time explicitly into their attacker models. This is a reasonable choice

for these tools since the timing and speculative behavior of proces-

sors is unspecified by the ISA. However, explicitly timing-sensitive

guarantees like Transient Noninterference and UPE provide more

complete security and we believe should be the gold standard for
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secure processor implementations. Guarnieri et al. [22] have pro-

posed hardware–software contracts to bridge this gap; Transient

Noninterference prevents leakage of architecturally accessed state,

corresponding to their J·Kseq
arch

contract.

9 DISCUSSION & CONCLUSION

SpecVerilog enables the verification of speculative security guaran-

tees of RTL designs via the incorporation of erasure labels into an

IFC type system. Here, we present a final discussion of some of the

benefits, potential, and limitations of SpecVerilog with respect to

secure processor design and verification.

Processor Verification. Verification of Transient Noninterference

or similar conditions fundamentally requires reasoning about func-

tional correctness, since speculation is defined relative to the ISA-

specified behavior. SpecVerilog provides a clean divide between

functional verification and security analysis via erasure conditions.

Erasure conditions abstract when misspeculation occurs without

having to reason about why it occurs. In this way, traditional pro-

cessor verification techniques can be used to prove the assumptions

needed by erasure labels (such as “the oldest instruction always

commits”) while SpecVerilog handles vulnerability checking. Al-

ternatively, high-level HDLs, such as PDL [56], could be used in

tandem with SpecVerilog to provide an end-to-end guarantee of

both functional correctness and speculative security.

Generalizing Speculation. We have described a single methodol-

ogy for OoO processor labeling and speculation, but SpecVerilog is

not limited to next-instruction prediction or to the ROB labels we

chose. SpecVerilog can be used for any microarchitecture as long

as each discrete speculation site is labeled with a corresponding

erasure condition. For example, SpecVerilog can be used to check

processors that incorporate multiple concurrent sources of spec-

ulation, such as both branch and value prediction. However, we

have yet to implement such a design. Furthermore, labels could

be assigned per branch rather than per instruction to achieve more

precise reasoning about potential vulnerabilities. One key challenge

of this approach is reasoning about the separation between “front-

end” speculation that applies to every instruction fetch, and branch

speculation that only applies to some.

Erasure Expressivity. Modern processors do not necessarily prop-

agate control signals globally in a single cycle, due to latency and

power constraints. Additionally, some misspeculation clean-up im-

plementations take multiple cycles and thus do not satisfy our

definition of end-to-end erasure. SpecVerilog cannot represent the

propagation or resolution of delayed misspeculation: erasure must

happen synchronously and immediately. To support these feature,

we believe SpecVerilog could incorporate explicit temporal logic

operators (e.g., “next”) into erasure conditions.
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P = ⟨rob, A, µ ⟩

Clock

P
A

−−−−→
clock

P

rob = _ :: x rob′ = rob :: x ′

x ′ = predict(arch(x, A), µ)
µ′ = update(arch(x, A), µ)

P −−−−−→
fetch x

P′
Fetch

Exec

rob = _ :: x :: _

µ′ = compute(arch(x, A), µ)

P −−−−−→
exec x

P′

Commit

rob = x :: rob′

A′ = commit(arch(x, A), µ)

P −−−−−−−→
commit x

P′

Miss

rob = rob′′ :: x :: _

rob′ = rob′′ :: x :: x ′ x ′ = real-npc(arch(x, A), µ)
µ′ = miss-upd(arch(x, A), µ)

P −−−−−→
miss x

P′

Schedule

d = sched(arch(rob, A), µ) P −→
d

P′

P → P′

Figure 9: Semantics for Abstract Out-of-Order Processors

τ ⊑ τ ′
Reflexive

τ ⊑ τ

Labels

l1 ⊑l l2

l1 ⊑ l2
Transitive

τ ⊑ τ ′′ τ ′′ ⊑ τ ′

τ ⊑ τ ′

Join-Intro

τ ⊑ τ1 ∨ τ ⊑ τ2

τ ⊑ τ1 ⊔ τ2
Join-Elim

τ1 ⊑ τ τ2 ⊑ τ

τ1 ⊔ τ2 ⊑ τ

Meet-Intro

τ ⊑ τ1 τ ⊑ τ2

τ ⊑ τ1 ⊓ τ2
Meet-Elim

τ1 ⊑ τ ∨ τ2 ⊑ τ

τ1 ⊓ τ2 ⊑ τ

Erase-Elim

τ2 ⊑ τ ′

τ1
c( ®v)↗τ2 ⊑ τ ′

Erase-Intro

τ ⊑ τ1

τ ⊑ τ1
c( ®v)↗τ2

Erase-Weaken

τ1 ⊑ τ ′
1

τ2 ⊑ τ ′
2

∀σ .σ ⊨ c(®v) =⇒ σ ⊨ c ′(®v ′)

τ1
c( ®v)↗τ2 ⊑ τ ′

1

c ′( ®v ′)↗τ ′
2

Figure 10: The complete environment-independent may-

flow-to relation. The ordering relation of the lattice of basic

security levels is ⊑l .

B PROOFS

Theorem 2 (Safety of Ordered Label Comparisons). The

result of any label comparison (on ordered labels) is guaranteed to be

low-equivalent at or above the meet of the labels of the labels.

∀l .x ,y ∈VARS.

σ1 ≈l σ2 ∧ (∀σ .Γ(x) σ⊑ Γ(y) ∨ Γ(y) σ⊑ Γ(x))

∧ Γ(x) ⊓ Γ(y) σ1⊑ l =⇒

σ1[x] ⊑ σ1[y] = σ2[x] ⊑ σ2[y]

Proof. By the definition of observational equivalence, both σ1
and σ2 agree on whether Γ(x) and Γ(y) are in the high (H ) or low

(L) sets: any label which flows to l is in the low set, everything else

is in the high set. There are four possible cases which correspond

to the sets that contain Γ(x) and Γ(y) respectively:

L, L. In this case, by observational equivalence, σ1[x] = σ2[x]
and σ1[y] = σ2[y], so the result of computing on them is equal.

L,H . In this case, Γ(y) σ @ Γ(x) by the definition ofL. Therefore,

the expression must return true in both σi since either Γ(y) σ⊑ Γ(x)
or Γ(x) σ⊑ Γ(y) by the ordering assumption.

H , L. This is symmetric to the prior case, except the expression

must return false.

H ,H . In this case, we cannot be sure that the result is equivalent

in both σi since there are no equality constraints on x ory. However,
Γ(x) ⊓ Γ(y) must be exactly equal to either Γ(x) or Γ(y) since they
are ordered; therefore Γ(x) ⊓ Γ(y) ∈ H (i.e., Γ(x) ⊓ Γ(y) σ @ l ). □

Lemma 1. For any register x , in a well-typed P (⪯ is prefix order),

∀i[s1, ...,sn ]j , i
[p1, ...,pn ]
k ∈ I(x), j ≤ k =⇒ [s1, ...sn ] ⪯ [p1, ...,pn ]

Proof.

Base Case: At first, this vacuously holds since no state is yet

influenced by an instruction.

Fetch: Each newly fetched instruction has a larger instruction

index than any prior instruction, and either keeps the same specu-

lative path or adds a new prediction:

pc ≈ i
[s1, ...,sn ]
j

I(pc ′) = I(pc) + i
[s1, ...,sn ]
j+1 ∨ I(pc ′) = I(pc) + i

[s1, ...,sn,sn+1]
j+1

fetch pc

In the above, pc ≈ i
[s1, ...,sn ]
j denotes the logical instruction associ-

ated with the current instruction address pc .

Exec & Commit: Interim execution cannot introduce new spec-

ulative paths or instructions and thus cannot affect this invariant.

Miss: The miss case is similar to the Fetch case: the new instruc-

tion x ′ has the same influence set as instruction x , with a higher

instruction index and does not extend x ’s speculative path.
In this case, µ and the ROB may now contain registers influenced

by x ′ and instructions along the misspeculated path, violating the

invariant. However, end-to-end erasure effectively allows us to

remove the influence of erased instructions from influence sets

(since their values have no impact on future execution).

All instructions ordered after x in ROB order (i.e., j ≤ k) are
erased since they must all have labels l such that SL(x ,head) σ⊑ l :
exactly the set of instructions whose speculation paths are not

prefixes of instruction x ’s. After this influence removal, all register

influence sets contain only instructions that satisfy the invariant.

□
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